Properties

Label 2-66-1.1-c11-0-12
Degree $2$
Conductor $66$
Sign $-1$
Analytic cond. $50.7106$
Root an. cond. $7.12114$
Motivic weight $11$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 32·2-s + 243·3-s + 1.02e3·4-s − 1.75e3·5-s − 7.77e3·6-s + 1.38e4·7-s − 3.27e4·8-s + 5.90e4·9-s + 5.60e4·10-s − 1.61e5·11-s + 2.48e5·12-s − 1.90e5·13-s − 4.43e5·14-s − 4.25e5·15-s + 1.04e6·16-s + 3.39e6·17-s − 1.88e6·18-s − 1.47e7·19-s − 1.79e6·20-s + 3.36e6·21-s + 5.15e6·22-s − 7.95e6·23-s − 7.96e6·24-s − 4.57e7·25-s + 6.09e6·26-s + 1.43e7·27-s + 1.41e7·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.250·5-s − 0.408·6-s + 0.311·7-s − 0.353·8-s + 1/3·9-s + 0.177·10-s − 0.301·11-s + 0.288·12-s − 0.142·13-s − 0.220·14-s − 0.144·15-s + 1/4·16-s + 0.579·17-s − 0.235·18-s − 1.36·19-s − 0.125·20-s + 0.180·21-s + 0.213·22-s − 0.257·23-s − 0.204·24-s − 0.937·25-s + 0.100·26-s + 0.192·27-s + 0.155·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 66 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 66 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(66\)    =    \(2 \cdot 3 \cdot 11\)
Sign: $-1$
Analytic conductor: \(50.7106\)
Root analytic conductor: \(7.12114\)
Motivic weight: \(11\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 66,\ (\ :11/2),\ -1)\)

Particular Values

\(L(6)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{5} T \)
3 \( 1 - p^{5} T \)
11 \( 1 + p^{5} T \)
good5 \( 1 + 14 p^{3} T + p^{11} T^{2} \)
7 \( 1 - 13864 T + p^{11} T^{2} \)
13 \( 1 + 190382 T + p^{11} T^{2} \)
17 \( 1 - 3395278 T + p^{11} T^{2} \)
19 \( 1 + 14773176 T + p^{11} T^{2} \)
23 \( 1 + 7959732 T + p^{11} T^{2} \)
29 \( 1 - 103198234 T + p^{11} T^{2} \)
31 \( 1 - 26907928 T + p^{11} T^{2} \)
37 \( 1 - 585244270 T + p^{11} T^{2} \)
41 \( 1 - 524400206 T + p^{11} T^{2} \)
43 \( 1 + 971194496 T + p^{11} T^{2} \)
47 \( 1 + 342773372 T + p^{11} T^{2} \)
53 \( 1 + 3132830750 T + p^{11} T^{2} \)
59 \( 1 + 4998086940 T + p^{11} T^{2} \)
61 \( 1 + 5981523902 T + p^{11} T^{2} \)
67 \( 1 + 13987592508 T + p^{11} T^{2} \)
71 \( 1 + 3744726364 T + p^{11} T^{2} \)
73 \( 1 + 23523428814 T + p^{11} T^{2} \)
79 \( 1 + 2124450104 T + p^{11} T^{2} \)
83 \( 1 + 36080767676 T + p^{11} T^{2} \)
89 \( 1 + 25240205414 T + p^{11} T^{2} \)
97 \( 1 - 19572817138 T + p^{11} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.85545713744352435433906237331, −10.64359602780804383558090345210, −9.619695064738375788549418862501, −8.378798267365006427037524409900, −7.66029288269123235895470158554, −6.20967169690545628541359104369, −4.41843903971224641416275844180, −2.86260833773054470856456531585, −1.57449006416839453378514850927, 0, 1.57449006416839453378514850927, 2.86260833773054470856456531585, 4.41843903971224641416275844180, 6.20967169690545628541359104369, 7.66029288269123235895470158554, 8.378798267365006427037524409900, 9.619695064738375788549418862501, 10.64359602780804383558090345210, 11.85545713744352435433906237331

Graph of the $Z$-function along the critical line