Properties

Label 2-656-164.163-c0-0-3
Degree $2$
Conductor $656$
Sign $1$
Analytic cond. $0.327386$
Root an. cond. $0.572177$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.84·3-s − 1.41·5-s + 0.765·7-s + 2.41·9-s − 0.765·11-s − 2.61·15-s − 1.84·19-s + 1.41·21-s + 1.00·25-s + 2.61·27-s − 1.41·33-s − 1.08·35-s + 1.41·37-s − 41-s − 3.41·45-s − 1.84·47-s − 0.414·49-s + 1.08·55-s − 3.41·57-s + 1.84·63-s − 0.765·67-s + 1.84·71-s + 1.41·73-s + 1.84·75-s − 0.585·77-s − 1.84·79-s + 2.41·81-s + ⋯
L(s)  = 1  + 1.84·3-s − 1.41·5-s + 0.765·7-s + 2.41·9-s − 0.765·11-s − 2.61·15-s − 1.84·19-s + 1.41·21-s + 1.00·25-s + 2.61·27-s − 1.41·33-s − 1.08·35-s + 1.41·37-s − 41-s − 3.41·45-s − 1.84·47-s − 0.414·49-s + 1.08·55-s − 3.41·57-s + 1.84·63-s − 0.765·67-s + 1.84·71-s + 1.41·73-s + 1.84·75-s − 0.585·77-s − 1.84·79-s + 2.41·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(656\)    =    \(2^{4} \cdot 41\)
Sign: $1$
Analytic conductor: \(0.327386\)
Root analytic conductor: \(0.572177\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{656} (655, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 656,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.374354146\)
\(L(\frac12)\) \(\approx\) \(1.374354146\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
41 \( 1 + T \)
good3 \( 1 - 1.84T + T^{2} \)
5 \( 1 + 1.41T + T^{2} \)
7 \( 1 - 0.765T + T^{2} \)
11 \( 1 + 0.765T + T^{2} \)
13 \( 1 - T^{2} \)
17 \( 1 - T^{2} \)
19 \( 1 + 1.84T + T^{2} \)
23 \( 1 - T^{2} \)
29 \( 1 - T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 - 1.41T + T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 + 1.84T + T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 + T^{2} \)
67 \( 1 + 0.765T + T^{2} \)
71 \( 1 - 1.84T + T^{2} \)
73 \( 1 - 1.41T + T^{2} \)
79 \( 1 + 1.84T + T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.70596336240725264149232225268, −9.733007792262387254692434802912, −8.604321897841215865318537191356, −8.161834842290546298745261363336, −7.73360455698427098279862112553, −6.71176168031284065746505645065, −4.74899388908536537760678302633, −4.07733114932509869475177614089, −3.10784910675280961693792871803, −1.99525563756140697030623004922, 1.99525563756140697030623004922, 3.10784910675280961693792871803, 4.07733114932509869475177614089, 4.74899388908536537760678302633, 6.71176168031284065746505645065, 7.73360455698427098279862112553, 8.161834842290546298745261363336, 8.604321897841215865318537191356, 9.733007792262387254692434802912, 10.70596336240725264149232225268

Graph of the $Z$-function along the critical line