Properties

Label 2-656-164.163-c0-0-1
Degree $2$
Conductor $656$
Sign $1$
Analytic cond. $0.327386$
Root an. cond. $0.572177$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.765·3-s + 1.41·5-s + 1.84·7-s − 0.414·9-s − 1.84·11-s − 1.08·15-s + 0.765·19-s − 1.41·21-s + 1.00·25-s + 1.08·27-s + 1.41·33-s + 2.61·35-s − 1.41·37-s − 41-s − 0.585·45-s + 0.765·47-s + 2.41·49-s − 2.61·55-s − 0.585·57-s − 0.765·63-s − 1.84·67-s − 0.765·71-s − 1.41·73-s − 0.765·75-s − 3.41·77-s + 0.765·79-s − 0.414·81-s + ⋯
L(s)  = 1  − 0.765·3-s + 1.41·5-s + 1.84·7-s − 0.414·9-s − 1.84·11-s − 1.08·15-s + 0.765·19-s − 1.41·21-s + 1.00·25-s + 1.08·27-s + 1.41·33-s + 2.61·35-s − 1.41·37-s − 41-s − 0.585·45-s + 0.765·47-s + 2.41·49-s − 2.61·55-s − 0.585·57-s − 0.765·63-s − 1.84·67-s − 0.765·71-s − 1.41·73-s − 0.765·75-s − 3.41·77-s + 0.765·79-s − 0.414·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(656\)    =    \(2^{4} \cdot 41\)
Sign: $1$
Analytic conductor: \(0.327386\)
Root analytic conductor: \(0.572177\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{656} (655, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 656,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9702259687\)
\(L(\frac12)\) \(\approx\) \(0.9702259687\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
41 \( 1 + T \)
good3 \( 1 + 0.765T + T^{2} \)
5 \( 1 - 1.41T + T^{2} \)
7 \( 1 - 1.84T + T^{2} \)
11 \( 1 + 1.84T + T^{2} \)
13 \( 1 - T^{2} \)
17 \( 1 - T^{2} \)
19 \( 1 - 0.765T + T^{2} \)
23 \( 1 - T^{2} \)
29 \( 1 - T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 + 1.41T + T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 - 0.765T + T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 + T^{2} \)
67 \( 1 + 1.84T + T^{2} \)
71 \( 1 + 0.765T + T^{2} \)
73 \( 1 + 1.41T + T^{2} \)
79 \( 1 - 0.765T + T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.54913124405329960785569175695, −10.34548027905648221112671227930, −8.965496522152418643214323052203, −8.153793755702559167855268379400, −7.26078090693194384009937625857, −5.86544379514963196660341740677, −5.32112748483815526770213425369, −4.84424762854838074947685567446, −2.72422454665248206811974865166, −1.64762374301951339998782882748, 1.64762374301951339998782882748, 2.72422454665248206811974865166, 4.84424762854838074947685567446, 5.32112748483815526770213425369, 5.86544379514963196660341740677, 7.26078090693194384009937625857, 8.153793755702559167855268379400, 8.965496522152418643214323052203, 10.34548027905648221112671227930, 10.54913124405329960785569175695

Graph of the $Z$-function along the critical line