Properties

Label 2-6552-1.1-c1-0-66
Degree $2$
Conductor $6552$
Sign $-1$
Analytic cond. $52.3179$
Root an. cond. $7.23311$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 7-s − 2·11-s + 13-s − 7·19-s + 3·23-s − 4·25-s + 9·29-s + 5·31-s − 35-s − 8·37-s + 10·41-s + 5·43-s − 7·47-s + 49-s − 3·53-s − 2·55-s + 6·61-s + 65-s − 10·67-s − 4·71-s − 11·73-s + 2·77-s − 11·79-s − 11·83-s + 3·89-s − 91-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.377·7-s − 0.603·11-s + 0.277·13-s − 1.60·19-s + 0.625·23-s − 4/5·25-s + 1.67·29-s + 0.898·31-s − 0.169·35-s − 1.31·37-s + 1.56·41-s + 0.762·43-s − 1.02·47-s + 1/7·49-s − 0.412·53-s − 0.269·55-s + 0.768·61-s + 0.124·65-s − 1.22·67-s − 0.474·71-s − 1.28·73-s + 0.227·77-s − 1.23·79-s − 1.20·83-s + 0.317·89-s − 0.104·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6552\)    =    \(2^{3} \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(52.3179\)
Root analytic conductor: \(7.23311\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6552,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
13 \( 1 - T \)
good5 \( 1 - T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + 7 T + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 - 5 T + p T^{2} \)
47 \( 1 + 7 T + p T^{2} \)
53 \( 1 + 3 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 + 11 T + p T^{2} \)
79 \( 1 + 11 T + p T^{2} \)
83 \( 1 + 11 T + p T^{2} \)
89 \( 1 - 3 T + p T^{2} \)
97 \( 1 + 15 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.66914847156675308748810502522, −6.83772489665389638417589680887, −6.23191861913624368915142545331, −5.66888164355744385523347126110, −4.70462681641584582462195219492, −4.12556278942285630433767071210, −3.00445400946739823266676932889, −2.41688276387460613412501930136, −1.33304308048761542490292123682, 0, 1.33304308048761542490292123682, 2.41688276387460613412501930136, 3.00445400946739823266676932889, 4.12556278942285630433767071210, 4.70462681641584582462195219492, 5.66888164355744385523347126110, 6.23191861913624368915142545331, 6.83772489665389638417589680887, 7.66914847156675308748810502522

Graph of the $Z$-function along the critical line