L(s) = 1 | + 5-s − 7-s − 2·11-s + 13-s − 7·19-s + 3·23-s − 4·25-s + 9·29-s + 5·31-s − 35-s − 8·37-s + 10·41-s + 5·43-s − 7·47-s + 49-s − 3·53-s − 2·55-s + 6·61-s + 65-s − 10·67-s − 4·71-s − 11·73-s + 2·77-s − 11·79-s − 11·83-s + 3·89-s − 91-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 0.377·7-s − 0.603·11-s + 0.277·13-s − 1.60·19-s + 0.625·23-s − 4/5·25-s + 1.67·29-s + 0.898·31-s − 0.169·35-s − 1.31·37-s + 1.56·41-s + 0.762·43-s − 1.02·47-s + 1/7·49-s − 0.412·53-s − 0.269·55-s + 0.768·61-s + 0.124·65-s − 1.22·67-s − 0.474·71-s − 1.28·73-s + 0.227·77-s − 1.23·79-s − 1.20·83-s + 0.317·89-s − 0.104·91-s + ⋯ |
Λ(s)=(=(6552s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(6552s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+T |
| 13 | 1−T |
good | 5 | 1−T+pT2 |
| 11 | 1+2T+pT2 |
| 17 | 1+pT2 |
| 19 | 1+7T+pT2 |
| 23 | 1−3T+pT2 |
| 29 | 1−9T+pT2 |
| 31 | 1−5T+pT2 |
| 37 | 1+8T+pT2 |
| 41 | 1−10T+pT2 |
| 43 | 1−5T+pT2 |
| 47 | 1+7T+pT2 |
| 53 | 1+3T+pT2 |
| 59 | 1+pT2 |
| 61 | 1−6T+pT2 |
| 67 | 1+10T+pT2 |
| 71 | 1+4T+pT2 |
| 73 | 1+11T+pT2 |
| 79 | 1+11T+pT2 |
| 83 | 1+11T+pT2 |
| 89 | 1−3T+pT2 |
| 97 | 1+15T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.66914847156675308748810502522, −6.83772489665389638417589680887, −6.23191861913624368915142545331, −5.66888164355744385523347126110, −4.70462681641584582462195219492, −4.12556278942285630433767071210, −3.00445400946739823266676932889, −2.41688276387460613412501930136, −1.33304308048761542490292123682, 0,
1.33304308048761542490292123682, 2.41688276387460613412501930136, 3.00445400946739823266676932889, 4.12556278942285630433767071210, 4.70462681641584582462195219492, 5.66888164355744385523347126110, 6.23191861913624368915142545331, 6.83772489665389638417589680887, 7.66914847156675308748810502522