Properties

Label 2-6525-1.1-c1-0-72
Degree 22
Conductor 65256525
Sign 11
Analytic cond. 52.102352.1023
Root an. cond. 7.218197.21819
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.21·2-s + 2.88·4-s + 1.31·7-s − 1.96·8-s + 4.29·11-s + 2.97·13-s − 2.91·14-s − 1.43·16-s + 0.642·17-s − 5.07·19-s − 9.48·22-s + 8.84·23-s − 6.57·26-s + 3.80·28-s − 29-s − 6.27·31-s + 7.10·32-s − 1.42·34-s − 0.934·37-s + 11.2·38-s + 11.0·41-s − 2.03·43-s + 12.3·44-s − 19.5·46-s + 9.57·47-s − 5.26·49-s + 8.59·52-s + ⋯
L(s)  = 1  − 1.56·2-s + 1.44·4-s + 0.497·7-s − 0.693·8-s + 1.29·11-s + 0.825·13-s − 0.777·14-s − 0.359·16-s + 0.155·17-s − 1.16·19-s − 2.02·22-s + 1.84·23-s − 1.29·26-s + 0.718·28-s − 0.185·29-s − 1.12·31-s + 1.25·32-s − 0.243·34-s − 0.153·37-s + 1.82·38-s + 1.73·41-s − 0.311·43-s + 1.86·44-s − 2.88·46-s + 1.39·47-s − 0.752·49-s + 1.19·52-s + ⋯

Functional equation

Λ(s)=(6525s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(6525s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 65256525    =    3252293^{2} \cdot 5^{2} \cdot 29
Sign: 11
Analytic conductor: 52.102352.1023
Root analytic conductor: 7.218197.21819
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 6525, ( :1/2), 1)(2,\ 6525,\ (\ :1/2),\ 1)

Particular Values

L(1)L(1) \approx 1.1494809211.149480921
L(12)L(\frac12) \approx 1.1494809211.149480921
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
5 1 1
29 1+T 1 + T
good2 1+2.21T+2T2 1 + 2.21T + 2T^{2}
7 11.31T+7T2 1 - 1.31T + 7T^{2}
11 14.29T+11T2 1 - 4.29T + 11T^{2}
13 12.97T+13T2 1 - 2.97T + 13T^{2}
17 10.642T+17T2 1 - 0.642T + 17T^{2}
19 1+5.07T+19T2 1 + 5.07T + 19T^{2}
23 18.84T+23T2 1 - 8.84T + 23T^{2}
31 1+6.27T+31T2 1 + 6.27T + 31T^{2}
37 1+0.934T+37T2 1 + 0.934T + 37T^{2}
41 111.0T+41T2 1 - 11.0T + 41T^{2}
43 1+2.03T+43T2 1 + 2.03T + 43T^{2}
47 19.57T+47T2 1 - 9.57T + 47T^{2}
53 1+13.0T+53T2 1 + 13.0T + 53T^{2}
59 1+2.55T+59T2 1 + 2.55T + 59T^{2}
61 18.46T+61T2 1 - 8.46T + 61T^{2}
67 112.9T+67T2 1 - 12.9T + 67T^{2}
71 15.10T+71T2 1 - 5.10T + 71T^{2}
73 116.0T+73T2 1 - 16.0T + 73T^{2}
79 1+3.30T+79T2 1 + 3.30T + 79T^{2}
83 15.24T+83T2 1 - 5.24T + 83T^{2}
89 1+5.05T+89T2 1 + 5.05T + 89T^{2}
97 12.04T+97T2 1 - 2.04T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.159426086225580764521116838056, −7.50063298534563337183898801465, −6.73250924967370053620396349675, −6.32361593390043195202639683875, −5.24515344907496627410145832019, −4.30685404334794276469933974745, −3.53334614313887340554896238582, −2.32016921242010620489014593874, −1.48610245672610154005068073947, −0.77582523477395432958171402416, 0.77582523477395432958171402416, 1.48610245672610154005068073947, 2.32016921242010620489014593874, 3.53334614313887340554896238582, 4.30685404334794276469933974745, 5.24515344907496627410145832019, 6.32361593390043195202639683875, 6.73250924967370053620396349675, 7.50063298534563337183898801465, 8.159426086225580764521116838056

Graph of the ZZ-function along the critical line