L(s) = 1 | + 2.07·2-s + 2.32·4-s − 0.602·7-s + 0.670·8-s + 3.75·11-s − 3.15·13-s − 1.25·14-s − 3.25·16-s − 5.57·17-s − 3.67·19-s + 7.80·22-s + 5.90·23-s − 6.54·26-s − 1.39·28-s + 29-s − 3.09·31-s − 8.09·32-s − 11.5·34-s − 9.93·37-s − 7.63·38-s + 0.0283·41-s + 5.05·43-s + 8.71·44-s + 12.2·46-s − 2.15·47-s − 6.63·49-s − 7.31·52-s + ⋯ |
L(s) = 1 | + 1.47·2-s + 1.16·4-s − 0.227·7-s + 0.237·8-s + 1.13·11-s − 0.873·13-s − 0.334·14-s − 0.812·16-s − 1.35·17-s − 0.842·19-s + 1.66·22-s + 1.23·23-s − 1.28·26-s − 0.264·28-s + 0.185·29-s − 0.555·31-s − 1.43·32-s − 1.98·34-s − 1.63·37-s − 1.23·38-s + 0.00443·41-s + 0.770·43-s + 1.31·44-s + 1.81·46-s − 0.314·47-s − 0.948·49-s − 1.01·52-s + ⋯ |
Λ(s)=(=(6525s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(6525s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 29 | 1−T |
good | 2 | 1−2.07T+2T2 |
| 7 | 1+0.602T+7T2 |
| 11 | 1−3.75T+11T2 |
| 13 | 1+3.15T+13T2 |
| 17 | 1+5.57T+17T2 |
| 19 | 1+3.67T+19T2 |
| 23 | 1−5.90T+23T2 |
| 31 | 1+3.09T+31T2 |
| 37 | 1+9.93T+37T2 |
| 41 | 1−0.0283T+41T2 |
| 43 | 1−5.05T+43T2 |
| 47 | 1+2.15T+47T2 |
| 53 | 1+11.6T+53T2 |
| 59 | 1−9.99T+59T2 |
| 61 | 1+5.22T+61T2 |
| 67 | 1+12.7T+67T2 |
| 71 | 1−5.71T+71T2 |
| 73 | 1−8.39T+73T2 |
| 79 | 1−9.33T+79T2 |
| 83 | 1+13.6T+83T2 |
| 89 | 1−10.8T+89T2 |
| 97 | 1+11.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.20993138234823062778039892090, −6.69753410188799093729545654694, −6.30188263788654961924359227320, −5.30607853523701675203518630657, −4.72399464498383652840647426468, −4.12243707137649188093188200487, −3.37965066541536046710775592995, −2.56961685036824597309077214751, −1.70349115438103068567087627505, 0,
1.70349115438103068567087627505, 2.56961685036824597309077214751, 3.37965066541536046710775592995, 4.12243707137649188093188200487, 4.72399464498383652840647426468, 5.30607853523701675203518630657, 6.30188263788654961924359227320, 6.69753410188799093729545654694, 7.20993138234823062778039892090