L(s) = 1 | − 2.57·2-s + 4.64·4-s + 4.69·7-s − 6.81·8-s + 3.11·11-s − 5.07·13-s − 12.1·14-s + 8.28·16-s − 1.40·17-s − 3.76·19-s − 8.03·22-s − 5.71·23-s + 13.0·26-s + 21.8·28-s − 29-s − 2.23·31-s − 7.73·32-s + 3.60·34-s + 5.79·37-s + 9.70·38-s + 10.6·41-s − 8.89·43-s + 14.4·44-s + 14.7·46-s − 3.62·47-s + 15.0·49-s − 23.5·52-s + ⋯ |
L(s) = 1 | − 1.82·2-s + 2.32·4-s + 1.77·7-s − 2.41·8-s + 0.939·11-s − 1.40·13-s − 3.23·14-s + 2.07·16-s − 0.339·17-s − 0.863·19-s − 1.71·22-s − 1.19·23-s + 2.56·26-s + 4.12·28-s − 0.185·29-s − 0.400·31-s − 1.36·32-s + 0.619·34-s + 0.952·37-s + 1.57·38-s + 1.67·41-s − 1.35·43-s + 2.18·44-s + 2.17·46-s − 0.529·47-s + 2.15·49-s − 3.27·52-s + ⋯ |
Λ(s)=(=(6525s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(6525s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 29 | 1+T |
good | 2 | 1+2.57T+2T2 |
| 7 | 1−4.69T+7T2 |
| 11 | 1−3.11T+11T2 |
| 13 | 1+5.07T+13T2 |
| 17 | 1+1.40T+17T2 |
| 19 | 1+3.76T+19T2 |
| 23 | 1+5.71T+23T2 |
| 31 | 1+2.23T+31T2 |
| 37 | 1−5.79T+37T2 |
| 41 | 1−10.6T+41T2 |
| 43 | 1+8.89T+43T2 |
| 47 | 1+3.62T+47T2 |
| 53 | 1−0.948T+53T2 |
| 59 | 1−8.53T+59T2 |
| 61 | 1+6.21T+61T2 |
| 67 | 1+13.9T+67T2 |
| 71 | 1+5.88T+71T2 |
| 73 | 1−7.08T+73T2 |
| 79 | 1−7.31T+79T2 |
| 83 | 1+13.6T+83T2 |
| 89 | 1−7.98T+89T2 |
| 97 | 1+13.8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.78280190628978762509429401210, −7.35485435371872029782794761762, −6.56803133553546558619632274712, −5.78762875277821434528167501092, −4.74665820987326923863898530779, −4.08683926466824348439100413826, −2.55318381383418278076963569558, −1.96613109548948213049500434777, −1.27220129901495762124123306942, 0,
1.27220129901495762124123306942, 1.96613109548948213049500434777, 2.55318381383418278076963569558, 4.08683926466824348439100413826, 4.74665820987326923863898530779, 5.78762875277821434528167501092, 6.56803133553546558619632274712, 7.35485435371872029782794761762, 7.78280190628978762509429401210