L(s) = 1 | + 0.747·2-s − 1.44·4-s − 3.28·7-s − 2.57·8-s + 1.14·11-s + 2.14·13-s − 2.45·14-s + 0.958·16-s + 6.16·17-s − 7.20·19-s + 0.853·22-s − 0.227·23-s + 1.60·26-s + 4.73·28-s + 29-s + 1.59·31-s + 5.86·32-s + 4.60·34-s + 0.690·37-s − 5.38·38-s + 9.55·41-s + 0.739·43-s − 1.64·44-s − 0.170·46-s − 3.52·47-s + 3.80·49-s − 3.09·52-s + ⋯ |
L(s) = 1 | + 0.528·2-s − 0.720·4-s − 1.24·7-s − 0.909·8-s + 0.344·11-s + 0.595·13-s − 0.656·14-s + 0.239·16-s + 1.49·17-s − 1.65·19-s + 0.181·22-s − 0.0474·23-s + 0.314·26-s + 0.895·28-s + 0.185·29-s + 0.285·31-s + 1.03·32-s + 0.790·34-s + 0.113·37-s − 0.873·38-s + 1.49·41-s + 0.112·43-s − 0.248·44-s − 0.0250·46-s − 0.514·47-s + 0.544·49-s − 0.428·52-s + ⋯ |
Λ(s)=(=(6525s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(6525s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 29 | 1−T |
good | 2 | 1−0.747T+2T2 |
| 7 | 1+3.28T+7T2 |
| 11 | 1−1.14T+11T2 |
| 13 | 1−2.14T+13T2 |
| 17 | 1−6.16T+17T2 |
| 19 | 1+7.20T+19T2 |
| 23 | 1+0.227T+23T2 |
| 31 | 1−1.59T+31T2 |
| 37 | 1−0.690T+37T2 |
| 41 | 1−9.55T+41T2 |
| 43 | 1−0.739T+43T2 |
| 47 | 1+3.52T+47T2 |
| 53 | 1−0.756T+53T2 |
| 59 | 1−7.99T+59T2 |
| 61 | 1+0.836T+61T2 |
| 67 | 1+6.00T+67T2 |
| 71 | 1+10.8T+71T2 |
| 73 | 1+6.33T+73T2 |
| 79 | 1+7.23T+79T2 |
| 83 | 1+7.46T+83T2 |
| 89 | 1+0.620T+89T2 |
| 97 | 1+4.33T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.66355292533562620356126899397, −6.73437690482299884612221934611, −6.02068729912820264752844057604, −5.74714510830185429567556144276, −4.61660711004747213935838485981, −3.98802193718855203790360650028, −3.36303556407738172638295172926, −2.62820325589259683832266208545, −1.15571206242245060112864506073, 0,
1.15571206242245060112864506073, 2.62820325589259683832266208545, 3.36303556407738172638295172926, 3.98802193718855203790360650028, 4.61660711004747213935838485981, 5.74714510830185429567556144276, 6.02068729912820264752844057604, 6.73437690482299884612221934611, 7.66355292533562620356126899397