L(s) = 1 | − 2.74·2-s + 5.52·4-s + 1.10·7-s − 9.68·8-s − 0.0961·11-s − 1.00·13-s − 3.03·14-s + 15.5·16-s − 1.92·17-s + 1.36·19-s + 0.263·22-s − 1.36·23-s + 2.76·26-s + 6.10·28-s + 29-s + 2.17·31-s − 23.1·32-s + 5.28·34-s − 6.61·37-s − 3.75·38-s − 5.07·41-s + 7.53·43-s − 0.531·44-s + 3.74·46-s − 5.77·47-s − 5.78·49-s − 5.57·52-s + ⋯ |
L(s) = 1 | − 1.94·2-s + 2.76·4-s + 0.417·7-s − 3.42·8-s − 0.0289·11-s − 0.279·13-s − 0.809·14-s + 3.87·16-s − 0.467·17-s + 0.314·19-s + 0.0562·22-s − 0.284·23-s + 0.542·26-s + 1.15·28-s + 0.185·29-s + 0.390·31-s − 4.09·32-s + 0.906·34-s − 1.08·37-s − 0.609·38-s − 0.793·41-s + 1.14·43-s − 0.0801·44-s + 0.552·46-s − 0.843·47-s − 0.825·49-s − 0.772·52-s + ⋯ |
Λ(s)=(=(6525s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(6525s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 29 | 1−T |
good | 2 | 1+2.74T+2T2 |
| 7 | 1−1.10T+7T2 |
| 11 | 1+0.0961T+11T2 |
| 13 | 1+1.00T+13T2 |
| 17 | 1+1.92T+17T2 |
| 19 | 1−1.36T+19T2 |
| 23 | 1+1.36T+23T2 |
| 31 | 1−2.17T+31T2 |
| 37 | 1+6.61T+37T2 |
| 41 | 1+5.07T+41T2 |
| 43 | 1−7.53T+43T2 |
| 47 | 1+5.77T+47T2 |
| 53 | 1−2.54T+53T2 |
| 59 | 1−12.6T+59T2 |
| 61 | 1−7.29T+61T2 |
| 67 | 1−2.77T+67T2 |
| 71 | 1−6.05T+71T2 |
| 73 | 1+11.5T+73T2 |
| 79 | 1+3.01T+79T2 |
| 83 | 1−0.455T+83T2 |
| 89 | 1+7.57T+89T2 |
| 97 | 1−10.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.84483696562995772229409665275, −7.13451706664709801126025684469, −6.66578940633069557172623322128, −5.82174389419070202400229899355, −4.97914938901750851800590969850, −3.72506426892479960409363037273, −2.72527112973358278385329256965, −1.99917436100928333396203774909, −1.12823699302895579248435988605, 0,
1.12823699302895579248435988605, 1.99917436100928333396203774909, 2.72527112973358278385329256965, 3.72506426892479960409363037273, 4.97914938901750851800590969850, 5.82174389419070202400229899355, 6.66578940633069557172623322128, 7.13451706664709801126025684469, 7.84483696562995772229409665275