L(s) = 1 | + 0.618·2-s − 1.61·4-s + 3·7-s − 2.23·8-s + 5.47·11-s + 6.23·13-s + 1.85·14-s + 1.85·16-s + 3.47·17-s + 7.70·19-s + 3.38·22-s + 3.85·26-s − 4.85·28-s − 29-s − 8·31-s + 5.61·32-s + 2.14·34-s + 8·37-s + 4.76·38-s + 4.47·41-s − 3.23·43-s − 8.85·44-s + 6.70·47-s + 2·49-s − 10.0·52-s − 6.76·53-s − 6.70·56-s + ⋯ |
L(s) = 1 | + 0.437·2-s − 0.809·4-s + 1.13·7-s − 0.790·8-s + 1.64·11-s + 1.72·13-s + 0.495·14-s + 0.463·16-s + 0.842·17-s + 1.76·19-s + 0.721·22-s + 0.755·26-s − 0.917·28-s − 0.185·29-s − 1.43·31-s + 0.993·32-s + 0.368·34-s + 1.31·37-s + 0.772·38-s + 0.698·41-s − 0.493·43-s − 1.33·44-s + 0.978·47-s + 0.285·49-s − 1.39·52-s − 0.929·53-s − 0.896·56-s + ⋯ |
Λ(s)=(=(6525s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(6525s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.264605918 |
L(21) |
≈ |
3.264605918 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 29 | 1+T |
good | 2 | 1−0.618T+2T2 |
| 7 | 1−3T+7T2 |
| 11 | 1−5.47T+11T2 |
| 13 | 1−6.23T+13T2 |
| 17 | 1−3.47T+17T2 |
| 19 | 1−7.70T+19T2 |
| 23 | 1+23T2 |
| 31 | 1+8T+31T2 |
| 37 | 1−8T+37T2 |
| 41 | 1−4.47T+41T2 |
| 43 | 1+3.23T+43T2 |
| 47 | 1−6.70T+47T2 |
| 53 | 1+6.76T+53T2 |
| 59 | 1+5.23T+59T2 |
| 61 | 1+5.70T+61T2 |
| 67 | 1−11.4T+67T2 |
| 71 | 1+7.23T+71T2 |
| 73 | 1−8T+73T2 |
| 79 | 1+6.18T+79T2 |
| 83 | 1+3.70T+83T2 |
| 89 | 1+11.1T+89T2 |
| 97 | 1+2.76T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.040406429657753405828417545233, −7.43527198631723347953430121433, −6.38422253454370398577104981968, −5.72899459123284017770723157425, −5.21770040889114517555638204420, −4.23795454770776330975962457280, −3.80058502672385595447266020499, −3.10361143848694433688060143986, −1.43888579542215107097389660009, −1.08636406122801098652270404839,
1.08636406122801098652270404839, 1.43888579542215107097389660009, 3.10361143848694433688060143986, 3.80058502672385595447266020499, 4.23795454770776330975962457280, 5.21770040889114517555638204420, 5.72899459123284017770723157425, 6.38422253454370398577104981968, 7.43527198631723347953430121433, 8.040406429657753405828417545233