L(s) = 1 | − 1.23·2-s − 0.471·4-s − 3.27·7-s + 3.05·8-s − 2.30·11-s + 5.57·13-s + 4.05·14-s − 2.83·16-s + 1.94·17-s − 3.59·19-s + 2.84·22-s + 1.66·23-s − 6.89·26-s + 1.54·28-s − 29-s + 1.70·31-s − 2.60·32-s − 2.39·34-s − 9.16·37-s + 4.44·38-s + 8.54·41-s − 3.56·43-s + 1.08·44-s − 2.05·46-s − 11.5·47-s + 3.73·49-s − 2.62·52-s + ⋯ |
L(s) = 1 | − 0.874·2-s − 0.235·4-s − 1.23·7-s + 1.08·8-s − 0.694·11-s + 1.54·13-s + 1.08·14-s − 0.708·16-s + 0.470·17-s − 0.823·19-s + 0.606·22-s + 0.346·23-s − 1.35·26-s + 0.291·28-s − 0.185·29-s + 0.306·31-s − 0.460·32-s − 0.411·34-s − 1.50·37-s + 0.720·38-s + 1.33·41-s − 0.543·43-s + 0.163·44-s − 0.303·46-s − 1.68·47-s + 0.533·49-s − 0.364·52-s + ⋯ |
Λ(s)=(=(6525s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(6525s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 29 | 1+T |
good | 2 | 1+1.23T+2T2 |
| 7 | 1+3.27T+7T2 |
| 11 | 1+2.30T+11T2 |
| 13 | 1−5.57T+13T2 |
| 17 | 1−1.94T+17T2 |
| 19 | 1+3.59T+19T2 |
| 23 | 1−1.66T+23T2 |
| 31 | 1−1.70T+31T2 |
| 37 | 1+9.16T+37T2 |
| 41 | 1−8.54T+41T2 |
| 43 | 1+3.56T+43T2 |
| 47 | 1+11.5T+47T2 |
| 53 | 1+9.66T+53T2 |
| 59 | 1−9.83T+59T2 |
| 61 | 1−5.42T+61T2 |
| 67 | 1−5.20T+67T2 |
| 71 | 1−6.02T+71T2 |
| 73 | 1−15.5T+73T2 |
| 79 | 1−12.2T+79T2 |
| 83 | 1+10.7T+83T2 |
| 89 | 1−2.53T+89T2 |
| 97 | 1+5.89T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.015148250592183757793907886141, −6.91098101913074315099803991585, −6.47277597439704426092090931430, −5.60728076536332471115212359258, −4.82544504531333511034320019172, −3.78100484164590848274556824765, −3.31576338829723681025399213314, −2.11055156903839115512337914651, −1.01212440022278897712629764799, 0,
1.01212440022278897712629764799, 2.11055156903839115512337914651, 3.31576338829723681025399213314, 3.78100484164590848274556824765, 4.82544504531333511034320019172, 5.60728076536332471115212359258, 6.47277597439704426092090931430, 6.91098101913074315099803991585, 8.015148250592183757793907886141