Properties

Label 2-6525-1.1-c1-0-106
Degree $2$
Conductor $6525$
Sign $-1$
Analytic cond. $52.1023$
Root an. cond. $7.21819$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.23·2-s − 0.471·4-s − 3.27·7-s + 3.05·8-s − 2.30·11-s + 5.57·13-s + 4.05·14-s − 2.83·16-s + 1.94·17-s − 3.59·19-s + 2.84·22-s + 1.66·23-s − 6.89·26-s + 1.54·28-s − 29-s + 1.70·31-s − 2.60·32-s − 2.39·34-s − 9.16·37-s + 4.44·38-s + 8.54·41-s − 3.56·43-s + 1.08·44-s − 2.05·46-s − 11.5·47-s + 3.73·49-s − 2.62·52-s + ⋯
L(s)  = 1  − 0.874·2-s − 0.235·4-s − 1.23·7-s + 1.08·8-s − 0.694·11-s + 1.54·13-s + 1.08·14-s − 0.708·16-s + 0.470·17-s − 0.823·19-s + 0.606·22-s + 0.346·23-s − 1.35·26-s + 0.291·28-s − 0.185·29-s + 0.306·31-s − 0.460·32-s − 0.411·34-s − 1.50·37-s + 0.720·38-s + 1.33·41-s − 0.543·43-s + 0.163·44-s − 0.303·46-s − 1.68·47-s + 0.533·49-s − 0.364·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6525\)    =    \(3^{2} \cdot 5^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(52.1023\)
Root analytic conductor: \(7.21819\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6525,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
29 \( 1 + T \)
good2 \( 1 + 1.23T + 2T^{2} \)
7 \( 1 + 3.27T + 7T^{2} \)
11 \( 1 + 2.30T + 11T^{2} \)
13 \( 1 - 5.57T + 13T^{2} \)
17 \( 1 - 1.94T + 17T^{2} \)
19 \( 1 + 3.59T + 19T^{2} \)
23 \( 1 - 1.66T + 23T^{2} \)
31 \( 1 - 1.70T + 31T^{2} \)
37 \( 1 + 9.16T + 37T^{2} \)
41 \( 1 - 8.54T + 41T^{2} \)
43 \( 1 + 3.56T + 43T^{2} \)
47 \( 1 + 11.5T + 47T^{2} \)
53 \( 1 + 9.66T + 53T^{2} \)
59 \( 1 - 9.83T + 59T^{2} \)
61 \( 1 - 5.42T + 61T^{2} \)
67 \( 1 - 5.20T + 67T^{2} \)
71 \( 1 - 6.02T + 71T^{2} \)
73 \( 1 - 15.5T + 73T^{2} \)
79 \( 1 - 12.2T + 79T^{2} \)
83 \( 1 + 10.7T + 83T^{2} \)
89 \( 1 - 2.53T + 89T^{2} \)
97 \( 1 + 5.89T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.015148250592183757793907886141, −6.91098101913074315099803991585, −6.47277597439704426092090931430, −5.60728076536332471115212359258, −4.82544504531333511034320019172, −3.78100484164590848274556824765, −3.31576338829723681025399213314, −2.11055156903839115512337914651, −1.01212440022278897712629764799, 0, 1.01212440022278897712629764799, 2.11055156903839115512337914651, 3.31576338829723681025399213314, 3.78100484164590848274556824765, 4.82544504531333511034320019172, 5.60728076536332471115212359258, 6.47277597439704426092090931430, 6.91098101913074315099803991585, 8.015148250592183757793907886141

Graph of the $Z$-function along the critical line