L(s) = 1 | − 0.712·2-s − 1.49·4-s − 2.77·7-s + 2.48·8-s − 4.26·11-s + 0.779·13-s + 1.98·14-s + 1.21·16-s + 1.90·17-s + 6.72·19-s + 3.04·22-s − 2.17·23-s − 0.555·26-s + 4.14·28-s − 29-s − 8.82·31-s − 5.83·32-s − 1.35·34-s + 1.48·37-s − 4.78·38-s + 7.71·41-s − 8.19·43-s + 6.36·44-s + 1.54·46-s + 5.19·47-s + 0.727·49-s − 1.16·52-s + ⋯ |
L(s) = 1 | − 0.503·2-s − 0.746·4-s − 1.05·7-s + 0.879·8-s − 1.28·11-s + 0.216·13-s + 0.529·14-s + 0.302·16-s + 0.461·17-s + 1.54·19-s + 0.648·22-s − 0.452·23-s − 0.108·26-s + 0.783·28-s − 0.185·29-s − 1.58·31-s − 1.03·32-s − 0.232·34-s + 0.243·37-s − 0.776·38-s + 1.20·41-s − 1.24·43-s + 0.960·44-s + 0.228·46-s + 0.757·47-s + 0.103·49-s − 0.161·52-s + ⋯ |
Λ(s)=(=(6525s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(6525s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 29 | 1+T |
good | 2 | 1+0.712T+2T2 |
| 7 | 1+2.77T+7T2 |
| 11 | 1+4.26T+11T2 |
| 13 | 1−0.779T+13T2 |
| 17 | 1−1.90T+17T2 |
| 19 | 1−6.72T+19T2 |
| 23 | 1+2.17T+23T2 |
| 31 | 1+8.82T+31T2 |
| 37 | 1−1.48T+37T2 |
| 41 | 1−7.71T+41T2 |
| 43 | 1+8.19T+43T2 |
| 47 | 1−5.19T+47T2 |
| 53 | 1−11.7T+53T2 |
| 59 | 1−4.46T+59T2 |
| 61 | 1+5.24T+61T2 |
| 67 | 1+8.49T+67T2 |
| 71 | 1+0.663T+71T2 |
| 73 | 1−16.5T+73T2 |
| 79 | 1−9.54T+79T2 |
| 83 | 1−0.0123T+83T2 |
| 89 | 1−5.46T+89T2 |
| 97 | 1+0.952T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.51998321050715498695386334560, −7.39557779205627741289473115590, −6.15778430321575164439314904428, −5.46293907034781336450100306864, −4.96477622157978970111524557238, −3.80505567277911078955317864042, −3.32132806073536577773722155801, −2.28426918983887133514478014970, −0.982930349876388716950656143583, 0,
0.982930349876388716950656143583, 2.28426918983887133514478014970, 3.32132806073536577773722155801, 3.80505567277911078955317864042, 4.96477622157978970111524557238, 5.46293907034781336450100306864, 6.15778430321575164439314904428, 7.39557779205627741289473115590, 7.51998321050715498695386334560