L(s) = 1 | + 4i·2-s − 3.22i·3-s − 16·4-s + 12.8·6-s − 200. i·7-s − 64i·8-s + 232.·9-s − 530.·11-s + 51.5i·12-s + 169i·13-s + 803.·14-s + 256·16-s − 15.1i·17-s + 930. i·18-s + 392.·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.206i·3-s − 0.5·4-s + 0.146·6-s − 1.54i·7-s − 0.353i·8-s + 0.957·9-s − 1.32·11-s + 0.103i·12-s + 0.277i·13-s + 1.09·14-s + 0.250·16-s − 0.0126i·17-s + 0.676i·18-s + 0.249·19-s + ⋯ |
Λ(s)=(=(650s/2ΓC(s)L(s)(−0.447+0.894i)Λ(6−s)
Λ(s)=(=(650s/2ΓC(s+5/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
650
= 2⋅52⋅13
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
104.249 |
Root analytic conductor: |
10.2102 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ650(599,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 650, ( :5/2), −0.447+0.894i)
|
Particular Values
L(3) |
≈ |
1.175639959 |
L(21) |
≈ |
1.175639959 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−4iT |
| 5 | 1 |
| 13 | 1−169iT |
good | 3 | 1+3.22iT−243T2 |
| 7 | 1+200.iT−1.68e4T2 |
| 11 | 1+530.T+1.61e5T2 |
| 17 | 1+15.1iT−1.41e6T2 |
| 19 | 1−392.T+2.47e6T2 |
| 23 | 1+2.63e3iT−6.43e6T2 |
| 29 | 1−7.13e3T+2.05e7T2 |
| 31 | 1−6.82e3T+2.86e7T2 |
| 37 | 1+1.32e4iT−6.93e7T2 |
| 41 | 1−3.21e3T+1.15e8T2 |
| 43 | 1−1.10e4iT−1.47e8T2 |
| 47 | 1−9.25e3iT−2.29e8T2 |
| 53 | 1+3.52e3iT−4.18e8T2 |
| 59 | 1+4.03e4T+7.14e8T2 |
| 61 | 1+4.42e4T+8.44e8T2 |
| 67 | 1−7.07e3iT−1.35e9T2 |
| 71 | 1+3.62e4T+1.80e9T2 |
| 73 | 1−4.10e4iT−2.07e9T2 |
| 79 | 1−1.94e4T+3.07e9T2 |
| 83 | 1+6.75e4iT−3.93e9T2 |
| 89 | 1+3.33e4T+5.58e9T2 |
| 97 | 1+2.20e3iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.597316264009758334032716786219, −8.277769652208717518294035809061, −7.61498839742408040073153062504, −6.98757781218594973133115870854, −6.13172444207821644923400486541, −4.68940879937535060625406298549, −4.30542046913951442647374910370, −2.85084614691639572370735438477, −1.22022309103391759501140567243, −0.27551089067402655469312379277,
1.28978000147736598621030073539, 2.47354201959764268132148851212, 3.17746977429690549705256963460, 4.66197663612106823366654314072, 5.27502655931792704818662700044, 6.32225895189913788447326419851, 7.71027238727486442320775011105, 8.440191531470252838850882259978, 9.382865357404957939439336053971, 10.10941686365408262597627426219