L(s) = 1 | + 4i·2-s − 16·4-s + 170i·7-s − 64i·8-s + 243·9-s − 250·11-s − 169i·13-s − 680·14-s + 256·16-s − 1.06e3i·17-s + 972i·18-s + 78·19-s − 1.00e3i·22-s + 1.57e3i·23-s + 676·26-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + 1.31i·7-s − 0.353i·8-s + 9-s − 0.622·11-s − 0.277i·13-s − 0.927·14-s + 0.250·16-s − 0.891i·17-s + 0.707i·18-s + 0.0495·19-s − 0.440i·22-s + 0.621i·23-s + 0.196·26-s + ⋯ |
Λ(s)=(=(650s/2ΓC(s)L(s)(0.447+0.894i)Λ(6−s)
Λ(s)=(=(650s/2ΓC(s+5/2)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
650
= 2⋅52⋅13
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
104.249 |
Root analytic conductor: |
10.2102 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ650(599,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 650, ( :5/2), 0.447+0.894i)
|
Particular Values
L(3) |
≈ |
0.6100755993 |
L(21) |
≈ |
0.6100755993 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−4iT |
| 5 | 1 |
| 13 | 1+169iT |
good | 3 | 1−243T2 |
| 7 | 1−170iT−1.68e4T2 |
| 11 | 1+250T+1.61e5T2 |
| 17 | 1+1.06e3iT−1.41e6T2 |
| 19 | 1−78T+2.47e6T2 |
| 23 | 1−1.57e3iT−6.43e6T2 |
| 29 | 1+2.57e3T+2.05e7T2 |
| 31 | 1+8.65e3T+2.86e7T2 |
| 37 | 1+1.09e4iT−6.93e7T2 |
| 41 | 1−1.05e3T+1.15e8T2 |
| 43 | 1+5.90e3iT−1.47e8T2 |
| 47 | 1−5.96e3iT−2.29e8T2 |
| 53 | 1−2.90e4iT−4.18e8T2 |
| 59 | 1−1.39e4T+7.14e8T2 |
| 61 | 1+3.28e4T+8.44e8T2 |
| 67 | 1−6.95e4iT−1.35e9T2 |
| 71 | 1+5.05e4T+1.80e9T2 |
| 73 | 1+4.67e4iT−2.07e9T2 |
| 79 | 1−1.93e4T+3.07e9T2 |
| 83 | 1+8.74e4iT−3.93e9T2 |
| 89 | 1+9.41e4T+5.58e9T2 |
| 97 | 1+1.82e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.338332789163391110963464133790, −8.881311486413362419027762561393, −7.62842051931812832181152162594, −7.19458845854385260263934825074, −5.81876445239945086251291291849, −5.36825008280670522608614138551, −4.24330809710752194713377085436, −2.94276659651090590896011864796, −1.73768026712978313587296239269, −0.13907298106046146538449847430,
1.06935338525208003745537233715, 1.99381650084970716669695554880, 3.48944317235194583476508427491, 4.18269143092090988590227267580, 5.09010932719553827065645751240, 6.49492079448778504743548669428, 7.38754431193185287615937658385, 8.156622463232810170321130873854, 9.327414086266412821706191588042, 10.20342167150840282451778053937