Properties

Label 2-650-5.4-c5-0-69
Degree $2$
Conductor $650$
Sign $0.447 + 0.894i$
Analytic cond. $104.249$
Root an. cond. $10.2102$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4i·2-s − 16·4-s + 170i·7-s − 64i·8-s + 243·9-s − 250·11-s − 169i·13-s − 680·14-s + 256·16-s − 1.06e3i·17-s + 972i·18-s + 78·19-s − 1.00e3i·22-s + 1.57e3i·23-s + 676·26-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.5·4-s + 1.31i·7-s − 0.353i·8-s + 9-s − 0.622·11-s − 0.277i·13-s − 0.927·14-s + 0.250·16-s − 0.891i·17-s + 0.707i·18-s + 0.0495·19-s − 0.440i·22-s + 0.621i·23-s + 0.196·26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(650\)    =    \(2 \cdot 5^{2} \cdot 13\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(104.249\)
Root analytic conductor: \(10.2102\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{650} (599, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 650,\ (\ :5/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.6100755993\)
\(L(\frac12)\) \(\approx\) \(0.6100755993\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4iT \)
5 \( 1 \)
13 \( 1 + 169iT \)
good3 \( 1 - 243T^{2} \)
7 \( 1 - 170iT - 1.68e4T^{2} \)
11 \( 1 + 250T + 1.61e5T^{2} \)
17 \( 1 + 1.06e3iT - 1.41e6T^{2} \)
19 \( 1 - 78T + 2.47e6T^{2} \)
23 \( 1 - 1.57e3iT - 6.43e6T^{2} \)
29 \( 1 + 2.57e3T + 2.05e7T^{2} \)
31 \( 1 + 8.65e3T + 2.86e7T^{2} \)
37 \( 1 + 1.09e4iT - 6.93e7T^{2} \)
41 \( 1 - 1.05e3T + 1.15e8T^{2} \)
43 \( 1 + 5.90e3iT - 1.47e8T^{2} \)
47 \( 1 - 5.96e3iT - 2.29e8T^{2} \)
53 \( 1 - 2.90e4iT - 4.18e8T^{2} \)
59 \( 1 - 1.39e4T + 7.14e8T^{2} \)
61 \( 1 + 3.28e4T + 8.44e8T^{2} \)
67 \( 1 - 6.95e4iT - 1.35e9T^{2} \)
71 \( 1 + 5.05e4T + 1.80e9T^{2} \)
73 \( 1 + 4.67e4iT - 2.07e9T^{2} \)
79 \( 1 - 1.93e4T + 3.07e9T^{2} \)
83 \( 1 + 8.74e4iT - 3.93e9T^{2} \)
89 \( 1 + 9.41e4T + 5.58e9T^{2} \)
97 \( 1 + 1.82e5iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.338332789163391110963464133790, −8.881311486413362419027762561393, −7.62842051931812832181152162594, −7.19458845854385260263934825074, −5.81876445239945086251291291849, −5.36825008280670522608614138551, −4.24330809710752194713377085436, −2.94276659651090590896011864796, −1.73768026712978313587296239269, −0.13907298106046146538449847430, 1.06935338525208003745537233715, 1.99381650084970716669695554880, 3.48944317235194583476508427491, 4.18269143092090988590227267580, 5.09010932719553827065645751240, 6.49492079448778504743548669428, 7.38754431193185287615937658385, 8.156622463232810170321130873854, 9.327414086266412821706191588042, 10.20342167150840282451778053937

Graph of the $Z$-function along the critical line