L(s) = 1 | + 4i·2-s − 3.71i·3-s − 16·4-s + 14.8·6-s + 10.2i·7-s − 64i·8-s + 229.·9-s + 197.·11-s + 59.4i·12-s + 169i·13-s − 41.0·14-s + 256·16-s + 949. i·17-s + 916. i·18-s − 2.23e3·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.238i·3-s − 0.5·4-s + 0.168·6-s + 0.0791i·7-s − 0.353i·8-s + 0.943·9-s + 0.491·11-s + 0.119i·12-s + 0.277i·13-s − 0.0559·14-s + 0.250·16-s + 0.797i·17-s + 0.666i·18-s − 1.41·19-s + ⋯ |
Λ(s)=(=(650s/2ΓC(s)L(s)(−0.447−0.894i)Λ(6−s)
Λ(s)=(=(650s/2ΓC(s+5/2)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
650
= 2⋅52⋅13
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
104.249 |
Root analytic conductor: |
10.2102 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ650(599,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 650, ( :5/2), −0.447−0.894i)
|
Particular Values
L(3) |
≈ |
1.803941768 |
L(21) |
≈ |
1.803941768 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−4iT |
| 5 | 1 |
| 13 | 1−169iT |
good | 3 | 1+3.71iT−243T2 |
| 7 | 1−10.2iT−1.68e4T2 |
| 11 | 1−197.T+1.61e5T2 |
| 17 | 1−949.iT−1.41e6T2 |
| 19 | 1+2.23e3T+2.47e6T2 |
| 23 | 1+367.iT−6.43e6T2 |
| 29 | 1−6.60e3T+2.05e7T2 |
| 31 | 1+9.91e3T+2.86e7T2 |
| 37 | 1−9.39e3iT−6.93e7T2 |
| 41 | 1−2.05e4T+1.15e8T2 |
| 43 | 1+1.63e4iT−1.47e8T2 |
| 47 | 1−1.35e4iT−2.29e8T2 |
| 53 | 1+3.50e4iT−4.18e8T2 |
| 59 | 1−6.17e3T+7.14e8T2 |
| 61 | 1−1.37e4T+8.44e8T2 |
| 67 | 1−6.21e4iT−1.35e9T2 |
| 71 | 1+3.83e4T+1.80e9T2 |
| 73 | 1−5.99e4iT−2.07e9T2 |
| 79 | 1+8.96e4T+3.07e9T2 |
| 83 | 1+3.81e4iT−3.93e9T2 |
| 89 | 1−7.82e4T+5.58e9T2 |
| 97 | 1+8.05e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.01490965016339175430817571516, −8.963840970674933210702280936329, −8.327843018468920554763025387653, −7.25022698745281790057090244978, −6.61958254984071574936630875872, −5.77717998378022361716435020857, −4.49463412409470356696621570470, −3.86125847059985752723520927594, −2.17883960659460888311907623577, −1.02559934351973872989535480549,
0.44409259208751514494333250563, 1.58768049422526518156796549212, 2.71539693346077122485768156496, 3.96658780277569106644300777851, 4.54960975823399968666830598478, 5.76425401034089152965326611079, 6.90333102816494350149405095376, 7.79426425534590172251355276095, 8.994315736877392583497952689137, 9.484984370860072076282322543736