| L(s) = 1 | + (1 − i)2-s + 1.50·3-s − 2i·4-s + (1.50 − 1.50i)6-s + (−2.61 − 2.61i)7-s + (−2 − 2i)8-s − 6.73·9-s + (−4.34 − 4.34i)11-s − 3.01i·12-s + (−12.7 + 2.77i)13-s − 5.23·14-s − 4·16-s − 4.25i·17-s + (−6.73 + 6.73i)18-s + (−7.91 + 7.91i)19-s + ⋯ |
| L(s) = 1 | + (0.5 − 0.5i)2-s + 0.502·3-s − 0.5i·4-s + (0.251 − 0.251i)6-s + (−0.374 − 0.374i)7-s + (−0.250 − 0.250i)8-s − 0.747·9-s + (−0.395 − 0.395i)11-s − 0.251i·12-s + (−0.976 + 0.213i)13-s − 0.374·14-s − 0.250·16-s − 0.250i·17-s + (−0.373 + 0.373i)18-s + (−0.416 + 0.416i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.962 - 0.272i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.962 - 0.272i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(0.7556591082\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7556591082\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-1 + i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (12.7 - 2.77i)T \) |
| good | 3 | \( 1 - 1.50T + 9T^{2} \) |
| 7 | \( 1 + (2.61 + 2.61i)T + 49iT^{2} \) |
| 11 | \( 1 + (4.34 + 4.34i)T + 121iT^{2} \) |
| 17 | \( 1 + 4.25iT - 289T^{2} \) |
| 19 | \( 1 + (7.91 - 7.91i)T - 361iT^{2} \) |
| 23 | \( 1 - 9.41iT - 529T^{2} \) |
| 29 | \( 1 + 35.8T + 841T^{2} \) |
| 31 | \( 1 + (-17.3 + 17.3i)T - 961iT^{2} \) |
| 37 | \( 1 + (0.326 + 0.326i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + (-31.8 + 31.8i)T - 1.68e3iT^{2} \) |
| 43 | \( 1 - 3.89iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (-1.54 - 1.54i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + 60.3T + 2.80e3T^{2} \) |
| 59 | \( 1 + (32.8 + 32.8i)T + 3.48e3iT^{2} \) |
| 61 | \( 1 - 83.7T + 3.72e3T^{2} \) |
| 67 | \( 1 + (53.7 - 53.7i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + (-57.3 + 57.3i)T - 5.04e3iT^{2} \) |
| 73 | \( 1 + (66.4 + 66.4i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 21.6T + 6.24e3T^{2} \) |
| 83 | \( 1 + (58.9 - 58.9i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + (-52.0 - 52.0i)T + 7.92e3iT^{2} \) |
| 97 | \( 1 + (34.8 - 34.8i)T - 9.40e3iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.857234784808724816823407286336, −9.220623307101746561219923503884, −8.145201770629437137979983258266, −7.26670805418216568960821374531, −6.08425989521802164688736246242, −5.21710684884582242553718502958, −4.01304086012324635976430103973, −3.07043614483240462945477359398, −2.10438061820763009836152987819, −0.19454102264500513273009146535,
2.33772975114000753244482641549, 3.12236884030837837461571060029, 4.43269224349167386467712373239, 5.40514668209683509443239607839, 6.28883203633796207144411556196, 7.33955202406177889370609382511, 8.106719677444047928774344260443, 8.982076909669162136740982565527, 9.751755688165787334946999115299, 10.86432111889186910486307730123