L(s) = 1 | + 4·2-s − 15.0·3-s + 16·4-s − 60.1·6-s − 52.9·7-s + 64·8-s − 16.7·9-s − 259.·11-s − 240.·12-s + 169·13-s − 211.·14-s + 256·16-s + 2.27e3·17-s − 67.0·18-s + 730.·19-s + 796.·21-s − 1.03e3·22-s − 1.97e3·23-s − 962.·24-s + 676·26-s + 3.90e3·27-s − 847.·28-s − 949.·29-s + 225.·31-s + 1.02e3·32-s + 3.89e3·33-s + 9.09e3·34-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.964·3-s + 0.5·4-s − 0.682·6-s − 0.408·7-s + 0.353·8-s − 0.0689·9-s − 0.646·11-s − 0.482·12-s + 0.277·13-s − 0.288·14-s + 0.250·16-s + 1.90·17-s − 0.0487·18-s + 0.464·19-s + 0.394·21-s − 0.456·22-s − 0.777·23-s − 0.341·24-s + 0.196·26-s + 1.03·27-s − 0.204·28-s − 0.209·29-s + 0.0421·31-s + 0.176·32-s + 0.623·33-s + 1.34·34-s + ⋯ |
Λ(s)=(=(650s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(650s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−4T |
| 5 | 1 |
| 13 | 1−169T |
good | 3 | 1+15.0T+243T2 |
| 7 | 1+52.9T+1.68e4T2 |
| 11 | 1+259.T+1.61e5T2 |
| 17 | 1−2.27e3T+1.41e6T2 |
| 19 | 1−730.T+2.47e6T2 |
| 23 | 1+1.97e3T+6.43e6T2 |
| 29 | 1+949.T+2.05e7T2 |
| 31 | 1−225.T+2.86e7T2 |
| 37 | 1−954.T+6.93e7T2 |
| 41 | 1+1.73e4T+1.15e8T2 |
| 43 | 1−1.00e4T+1.47e8T2 |
| 47 | 1−6.06e3T+2.29e8T2 |
| 53 | 1−1.61e4T+4.18e8T2 |
| 59 | 1−326.T+7.14e8T2 |
| 61 | 1+4.68e4T+8.44e8T2 |
| 67 | 1+4.35e4T+1.35e9T2 |
| 71 | 1−5.17e4T+1.80e9T2 |
| 73 | 1−1.32e4T+2.07e9T2 |
| 79 | 1−7.62e4T+3.07e9T2 |
| 83 | 1+3.01e4T+3.93e9T2 |
| 89 | 1+6.67e4T+5.58e9T2 |
| 97 | 1+1.51e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.661424740767106877540296716837, −8.257915936484532617406275530042, −7.41391273703740005334771461912, −6.32309051944198239145421325964, −5.63810298597729792091611634647, −5.03642640504899894289498140108, −3.70950936553542139256605393018, −2.80484413018033340477116498766, −1.25346453166362685586256091356, 0,
1.25346453166362685586256091356, 2.80484413018033340477116498766, 3.70950936553542139256605393018, 5.03642640504899894289498140108, 5.63810298597729792091611634647, 6.32309051944198239145421325964, 7.41391273703740005334771461912, 8.257915936484532617406275530042, 9.661424740767106877540296716837