Properties

Label 2-650-1.1-c5-0-67
Degree $2$
Conductor $650$
Sign $-1$
Analytic cond. $104.249$
Root an. cond. $10.2102$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 15.0·3-s + 16·4-s − 60.1·6-s − 52.9·7-s + 64·8-s − 16.7·9-s − 259.·11-s − 240.·12-s + 169·13-s − 211.·14-s + 256·16-s + 2.27e3·17-s − 67.0·18-s + 730.·19-s + 796.·21-s − 1.03e3·22-s − 1.97e3·23-s − 962.·24-s + 676·26-s + 3.90e3·27-s − 847.·28-s − 949.·29-s + 225.·31-s + 1.02e3·32-s + 3.89e3·33-s + 9.09e3·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.964·3-s + 0.5·4-s − 0.682·6-s − 0.408·7-s + 0.353·8-s − 0.0689·9-s − 0.646·11-s − 0.482·12-s + 0.277·13-s − 0.288·14-s + 0.250·16-s + 1.90·17-s − 0.0487·18-s + 0.464·19-s + 0.394·21-s − 0.456·22-s − 0.777·23-s − 0.341·24-s + 0.196·26-s + 1.03·27-s − 0.204·28-s − 0.209·29-s + 0.0421·31-s + 0.176·32-s + 0.623·33-s + 1.34·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(650\)    =    \(2 \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(104.249\)
Root analytic conductor: \(10.2102\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 650,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
5 \( 1 \)
13 \( 1 - 169T \)
good3 \( 1 + 15.0T + 243T^{2} \)
7 \( 1 + 52.9T + 1.68e4T^{2} \)
11 \( 1 + 259.T + 1.61e5T^{2} \)
17 \( 1 - 2.27e3T + 1.41e6T^{2} \)
19 \( 1 - 730.T + 2.47e6T^{2} \)
23 \( 1 + 1.97e3T + 6.43e6T^{2} \)
29 \( 1 + 949.T + 2.05e7T^{2} \)
31 \( 1 - 225.T + 2.86e7T^{2} \)
37 \( 1 - 954.T + 6.93e7T^{2} \)
41 \( 1 + 1.73e4T + 1.15e8T^{2} \)
43 \( 1 - 1.00e4T + 1.47e8T^{2} \)
47 \( 1 - 6.06e3T + 2.29e8T^{2} \)
53 \( 1 - 1.61e4T + 4.18e8T^{2} \)
59 \( 1 - 326.T + 7.14e8T^{2} \)
61 \( 1 + 4.68e4T + 8.44e8T^{2} \)
67 \( 1 + 4.35e4T + 1.35e9T^{2} \)
71 \( 1 - 5.17e4T + 1.80e9T^{2} \)
73 \( 1 - 1.32e4T + 2.07e9T^{2} \)
79 \( 1 - 7.62e4T + 3.07e9T^{2} \)
83 \( 1 + 3.01e4T + 3.93e9T^{2} \)
89 \( 1 + 6.67e4T + 5.58e9T^{2} \)
97 \( 1 + 1.51e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.661424740767106877540296716837, −8.257915936484532617406275530042, −7.41391273703740005334771461912, −6.32309051944198239145421325964, −5.63810298597729792091611634647, −5.03642640504899894289498140108, −3.70950936553542139256605393018, −2.80484413018033340477116498766, −1.25346453166362685586256091356, 0, 1.25346453166362685586256091356, 2.80484413018033340477116498766, 3.70950936553542139256605393018, 5.03642640504899894289498140108, 5.63810298597729792091611634647, 6.32309051944198239145421325964, 7.41391273703740005334771461912, 8.257915936484532617406275530042, 9.661424740767106877540296716837

Graph of the $Z$-function along the critical line