| L(s) = 1 | − 2.51i·2-s + 1.51·3-s − 4.32·4-s + i·5-s − 3.80i·6-s + 3.32i·7-s + 5.83i·8-s − 0.707·9-s + 2.51·10-s − 2.83i·11-s − 6.54·12-s + (−3.51 − 0.806i)13-s + 8.34·14-s + 1.51i·15-s + 6.02·16-s + 6.64·17-s + ⋯ |
| L(s) = 1 | − 1.77i·2-s + 0.874·3-s − 2.16·4-s + 0.447i·5-s − 1.55i·6-s + 1.25i·7-s + 2.06i·8-s − 0.235·9-s + 0.795·10-s − 0.854i·11-s − 1.88·12-s + (−0.974 − 0.223i)13-s + 2.23·14-s + 0.390i·15-s + 1.50·16-s + 1.61·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.223 + 0.974i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.223 + 0.974i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.613037 - 0.769721i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.613037 - 0.769721i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 - iT \) |
| 13 | \( 1 + (3.51 + 0.806i)T \) |
| good | 2 | \( 1 + 2.51iT - 2T^{2} \) |
| 3 | \( 1 - 1.51T + 3T^{2} \) |
| 7 | \( 1 - 3.32iT - 7T^{2} \) |
| 11 | \( 1 + 2.83iT - 11T^{2} \) |
| 17 | \( 1 - 6.64T + 17T^{2} \) |
| 19 | \( 1 + 2.19iT - 19T^{2} \) |
| 23 | \( 1 - 0.485T + 23T^{2} \) |
| 29 | \( 1 + 3.32T + 29T^{2} \) |
| 31 | \( 1 + 3.80iT - 31T^{2} \) |
| 37 | \( 1 - 9.32iT - 37T^{2} \) |
| 41 | \( 1 - 1.61iT - 41T^{2} \) |
| 43 | \( 1 - 0.872T + 43T^{2} \) |
| 47 | \( 1 + 3.32iT - 47T^{2} \) |
| 53 | \( 1 - 11.6T + 53T^{2} \) |
| 59 | \( 1 + 8.83iT - 59T^{2} \) |
| 61 | \( 1 + 3.70T + 61T^{2} \) |
| 67 | \( 1 + 4.29iT - 67T^{2} \) |
| 71 | \( 1 + 2.19iT - 71T^{2} \) |
| 73 | \( 1 - 12.7iT - 73T^{2} \) |
| 79 | \( 1 - 0.585T + 79T^{2} \) |
| 83 | \( 1 + 7.70iT - 83T^{2} \) |
| 89 | \( 1 - 3.41iT - 89T^{2} \) |
| 97 | \( 1 + 0.641iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.32786399171178869870163739693, −13.30551433024454737753302607472, −12.12210810935846824603059680982, −11.41651577707671778762188238346, −10.02664614708870365503595157855, −9.137658412270706370707550165582, −8.099435753844659029482053967235, −5.44998258684393341157446975988, −3.32437052564799633022118231743, −2.48887610981466579988293126407,
4.04651105794086478505517210749, 5.46288159275398275192089909136, 7.27787089118481219684821541918, 7.75043303720510673533145671322, 9.068382569454427754361420392908, 10.06075000967323738220455540702, 12.42003690771437732023442424975, 13.67014887039742368222812187071, 14.39820541552617185893150368689, 14.97177182291491666067663068449