L(s) = 1 | + 5·2-s + 6·3-s − 7·4-s − 25·5-s + 30·6-s − 244·7-s − 195·8-s − 207·9-s − 125·10-s + 794·11-s − 42·12-s − 169·13-s − 1.22e3·14-s − 150·15-s − 751·16-s − 1.53e3·17-s − 1.03e3·18-s + 2.70e3·19-s + 175·20-s − 1.46e3·21-s + 3.97e3·22-s − 702·23-s − 1.17e3·24-s + 625·25-s − 845·26-s − 2.70e3·27-s + 1.70e3·28-s + ⋯ |
L(s) = 1 | + 0.883·2-s + 0.384·3-s − 0.218·4-s − 0.447·5-s + 0.340·6-s − 1.88·7-s − 1.07·8-s − 0.851·9-s − 0.395·10-s + 1.97·11-s − 0.0841·12-s − 0.277·13-s − 1.66·14-s − 0.172·15-s − 0.733·16-s − 1.28·17-s − 0.752·18-s + 1.71·19-s + 0.0978·20-s − 0.724·21-s + 1.74·22-s − 0.276·23-s − 0.414·24-s + 1/5·25-s − 0.245·26-s − 0.712·27-s + 0.411·28-s + ⋯ |
Λ(s)=(=(65s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(65s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+p2T |
| 13 | 1+p2T |
good | 2 | 1−5T+p5T2 |
| 3 | 1−2pT+p5T2 |
| 7 | 1+244T+p5T2 |
| 11 | 1−794T+p5T2 |
| 17 | 1+1534T+p5T2 |
| 19 | 1−2706T+p5T2 |
| 23 | 1+702T+p5T2 |
| 29 | 1+5038T+p5T2 |
| 31 | 1+3634T+p5T2 |
| 37 | 1+7058T+p5T2 |
| 41 | 1+294T+p5T2 |
| 43 | 1−7618T+p5T2 |
| 47 | 1+3020T+p5T2 |
| 53 | 1−626T+p5T2 |
| 59 | 1+30066T+p5T2 |
| 61 | 1+5806T+p5T2 |
| 67 | 1+12436T+p5T2 |
| 71 | 1−4734T+p5T2 |
| 73 | 1+14694T+p5T2 |
| 79 | 1+39804T+p5T2 |
| 83 | 1+41776T+p5T2 |
| 89 | 1−7970T+p5T2 |
| 97 | 1+78050T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.48930391804837347601379937064, −12.38030236217803321319551685259, −11.54688191608099333040674511666, −9.401256699229021353461743707036, −9.059771108121277185617321513720, −6.92110022865449866282603655496, −5.84462159905689840514688138944, −3.93818613014492224450947705413, −3.15080588148727670546776940961, 0,
3.15080588148727670546776940961, 3.93818613014492224450947705413, 5.84462159905689840514688138944, 6.92110022865449866282603655496, 9.059771108121277185617321513720, 9.401256699229021353461743707036, 11.54688191608099333040674511666, 12.38030236217803321319551685259, 13.48930391804837347601379937064