L(s) = 1 | − 5-s + 5·11-s + 3·17-s − 5·19-s − 6·23-s + 25-s − 10·29-s + 2·31-s + 4·37-s − 3·41-s − 3·43-s − 4·47-s − 7·49-s − 6·53-s − 5·55-s + 3·59-s + 2·61-s + 11·67-s + 14·71-s − 15·73-s − 10·79-s + 12·83-s − 3·85-s + 14·89-s + 5·95-s − 13·97-s − 12·101-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 1.50·11-s + 0.727·17-s − 1.14·19-s − 1.25·23-s + 1/5·25-s − 1.85·29-s + 0.359·31-s + 0.657·37-s − 0.468·41-s − 0.457·43-s − 0.583·47-s − 49-s − 0.824·53-s − 0.674·55-s + 0.390·59-s + 0.256·61-s + 1.34·67-s + 1.66·71-s − 1.75·73-s − 1.12·79-s + 1.31·83-s − 0.325·85-s + 1.48·89-s + 0.512·95-s − 1.31·97-s − 1.19·101-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + T \) |
good | 7 | \( 1 + p T^{2} \) |
| 11 | \( 1 - 5 T + p T^{2} \) |
| 13 | \( 1 + p T^{2} \) |
| 17 | \( 1 - 3 T + p T^{2} \) |
| 19 | \( 1 + 5 T + p T^{2} \) |
| 23 | \( 1 + 6 T + p T^{2} \) |
| 29 | \( 1 + 10 T + p T^{2} \) |
| 31 | \( 1 - 2 T + p T^{2} \) |
| 37 | \( 1 - 4 T + p T^{2} \) |
| 41 | \( 1 + 3 T + p T^{2} \) |
| 43 | \( 1 + 3 T + p T^{2} \) |
| 47 | \( 1 + 4 T + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 - 3 T + p T^{2} \) |
| 61 | \( 1 - 2 T + p T^{2} \) |
| 67 | \( 1 - 11 T + p T^{2} \) |
| 71 | \( 1 - 14 T + p T^{2} \) |
| 73 | \( 1 + 15 T + p T^{2} \) |
| 79 | \( 1 + 10 T + p T^{2} \) |
| 83 | \( 1 - 12 T + p T^{2} \) |
| 89 | \( 1 - 14 T + p T^{2} \) |
| 97 | \( 1 + 13 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.81212256184125416581208696729, −6.84030052849159377245471985233, −6.36315767456006162547057716195, −5.62281187732482829008822990279, −4.64605279824741366722167485179, −3.89307308908582402198992282959, −3.47412284263825399275488195861, −2.17888958965834404694640156988, −1.35261254883323916209184071170, 0,
1.35261254883323916209184071170, 2.17888958965834404694640156988, 3.47412284263825399275488195861, 3.89307308908582402198992282959, 4.64605279824741366722167485179, 5.62281187732482829008822990279, 6.36315767456006162547057716195, 6.84030052849159377245471985233, 7.81212256184125416581208696729