L(s) = 1 | − 5-s + 5·11-s + 3·17-s − 5·19-s − 6·23-s + 25-s − 10·29-s + 2·31-s + 4·37-s − 3·41-s − 3·43-s − 4·47-s − 7·49-s − 6·53-s − 5·55-s + 3·59-s + 2·61-s + 11·67-s + 14·71-s − 15·73-s − 10·79-s + 12·83-s − 3·85-s + 14·89-s + 5·95-s − 13·97-s − 12·101-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 1.50·11-s + 0.727·17-s − 1.14·19-s − 1.25·23-s + 1/5·25-s − 1.85·29-s + 0.359·31-s + 0.657·37-s − 0.468·41-s − 0.457·43-s − 0.583·47-s − 49-s − 0.824·53-s − 0.674·55-s + 0.390·59-s + 0.256·61-s + 1.34·67-s + 1.66·71-s − 1.75·73-s − 1.12·79-s + 1.31·83-s − 0.325·85-s + 1.48·89-s + 0.512·95-s − 1.31·97-s − 1.19·101-s + ⋯ |
Λ(s)=(=(6480s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(6480s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+T |
good | 7 | 1+pT2 |
| 11 | 1−5T+pT2 |
| 13 | 1+pT2 |
| 17 | 1−3T+pT2 |
| 19 | 1+5T+pT2 |
| 23 | 1+6T+pT2 |
| 29 | 1+10T+pT2 |
| 31 | 1−2T+pT2 |
| 37 | 1−4T+pT2 |
| 41 | 1+3T+pT2 |
| 43 | 1+3T+pT2 |
| 47 | 1+4T+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1−3T+pT2 |
| 61 | 1−2T+pT2 |
| 67 | 1−11T+pT2 |
| 71 | 1−14T+pT2 |
| 73 | 1+15T+pT2 |
| 79 | 1+10T+pT2 |
| 83 | 1−12T+pT2 |
| 89 | 1−14T+pT2 |
| 97 | 1+13T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.81212256184125416581208696729, −6.84030052849159377245471985233, −6.36315767456006162547057716195, −5.62281187732482829008822990279, −4.64605279824741366722167485179, −3.89307308908582402198992282959, −3.47412284263825399275488195861, −2.17888958965834404694640156988, −1.35261254883323916209184071170, 0,
1.35261254883323916209184071170, 2.17888958965834404694640156988, 3.47412284263825399275488195861, 3.89307308908582402198992282959, 4.64605279824741366722167485179, 5.62281187732482829008822990279, 6.36315767456006162547057716195, 6.84030052849159377245471985233, 7.81212256184125416581208696729