Properties

Label 2-6480-1.1-c1-0-22
Degree $2$
Conductor $6480$
Sign $1$
Analytic cond. $51.7430$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 4.27·7-s + 1.27·11-s + 6.27·13-s + 2·17-s − 19-s − 0.274·23-s + 25-s − 1.27·29-s + 1.27·31-s − 4.27·35-s + 4.54·37-s − 7.54·41-s − 4·43-s − 6.27·47-s + 11.2·49-s + 8.27·53-s + 1.27·55-s + 13·59-s − 6.54·61-s + 6.27·65-s + 14.5·67-s + 0.725·71-s − 15.0·73-s − 5.45·77-s + 4.54·79-s − 12.5·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.61·7-s + 0.384·11-s + 1.74·13-s + 0.485·17-s − 0.229·19-s − 0.0573·23-s + 0.200·25-s − 0.236·29-s + 0.228·31-s − 0.722·35-s + 0.747·37-s − 1.17·41-s − 0.609·43-s − 0.915·47-s + 1.61·49-s + 1.13·53-s + 0.171·55-s + 1.69·59-s − 0.838·61-s + 0.778·65-s + 1.77·67-s + 0.0860·71-s − 1.76·73-s − 0.621·77-s + 0.511·79-s − 1.37·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6480\)    =    \(2^{4} \cdot 3^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(51.7430\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6480,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.894591312\)
\(L(\frac12)\) \(\approx\) \(1.894591312\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 + 4.27T + 7T^{2} \)
11 \( 1 - 1.27T + 11T^{2} \)
13 \( 1 - 6.27T + 13T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
19 \( 1 + T + 19T^{2} \)
23 \( 1 + 0.274T + 23T^{2} \)
29 \( 1 + 1.27T + 29T^{2} \)
31 \( 1 - 1.27T + 31T^{2} \)
37 \( 1 - 4.54T + 37T^{2} \)
41 \( 1 + 7.54T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 + 6.27T + 47T^{2} \)
53 \( 1 - 8.27T + 53T^{2} \)
59 \( 1 - 13T + 59T^{2} \)
61 \( 1 + 6.54T + 61T^{2} \)
67 \( 1 - 14.5T + 67T^{2} \)
71 \( 1 - 0.725T + 71T^{2} \)
73 \( 1 + 15.0T + 73T^{2} \)
79 \( 1 - 4.54T + 79T^{2} \)
83 \( 1 + 12.5T + 83T^{2} \)
89 \( 1 + 9.82T + 89T^{2} \)
97 \( 1 - 16T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.184983694435237956185362496476, −7.04128196177843053936631471924, −6.54768077981291665050237455404, −6.01106787266463468182907304697, −5.41308993567024169202671242386, −4.18487038051319654468145275660, −3.52527771959397135454840513649, −2.95712391446607568717122170974, −1.77463562754797208096955677276, −0.72300981464788957430510522089, 0.72300981464788957430510522089, 1.77463562754797208096955677276, 2.95712391446607568717122170974, 3.52527771959397135454840513649, 4.18487038051319654468145275660, 5.41308993567024169202671242386, 6.01106787266463468182907304697, 6.54768077981291665050237455404, 7.04128196177843053936631471924, 8.184983694435237956185362496476

Graph of the $Z$-function along the critical line