L(s) = 1 | + (2 + 2i)3-s + (−2 − i)5-s + (2 + 2i)7-s + 5i·9-s + 4·11-s + (3 − 3i)13-s + (−2 − 6i)15-s + (−3 + 3i)17-s + 8i·21-s + (−6 + 6i)23-s + (3 + 4i)25-s + (−4 + 4i)27-s − 2·29-s − 4i·31-s + (8 + 8i)33-s + ⋯ |
L(s) = 1 | + (1.15 + 1.15i)3-s + (−0.894 − 0.447i)5-s + (0.755 + 0.755i)7-s + 1.66i·9-s + 1.20·11-s + (0.832 − 0.832i)13-s + (−0.516 − 1.54i)15-s + (−0.727 + 0.727i)17-s + 1.74i·21-s + (−1.25 + 1.25i)23-s + (0.600 + 0.800i)25-s + (−0.769 + 0.769i)27-s − 0.371·29-s − 0.718i·31-s + (1.39 + 1.39i)33-s + ⋯ |
Λ(s)=(=(640s/2ΓC(s)L(s)(0.229−0.973i)Λ(2−s)
Λ(s)=(=(640s/2ΓC(s+1/2)L(s)(0.229−0.973i)Λ(1−s)
Degree: |
2 |
Conductor: |
640
= 27⋅5
|
Sign: |
0.229−0.973i
|
Analytic conductor: |
5.11042 |
Root analytic conductor: |
2.26062 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ640(63,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 640, ( :1/2), 0.229−0.973i)
|
Particular Values
L(1) |
≈ |
1.64644+1.30302i |
L(21) |
≈ |
1.64644+1.30302i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(2+i)T |
good | 3 | 1+(−2−2i)T+3iT2 |
| 7 | 1+(−2−2i)T+7iT2 |
| 11 | 1−4T+11T2 |
| 13 | 1+(−3+3i)T−13iT2 |
| 17 | 1+(3−3i)T−17iT2 |
| 19 | 1−19T2 |
| 23 | 1+(6−6i)T−23iT2 |
| 29 | 1+2T+29T2 |
| 31 | 1+4iT−31T2 |
| 37 | 1+(−3−3i)T+37iT2 |
| 41 | 1+41T2 |
| 43 | 1+(6+6i)T+43iT2 |
| 47 | 1+(−6−6i)T+47iT2 |
| 53 | 1+(3−3i)T−53iT2 |
| 59 | 1+8iT−59T2 |
| 61 | 1+6iT−61T2 |
| 67 | 1+(−6+6i)T−67iT2 |
| 71 | 1+12iT−71T2 |
| 73 | 1+(5+5i)T+73iT2 |
| 79 | 1−8T+79T2 |
| 83 | 1+(−6−6i)T+83iT2 |
| 89 | 1−89T2 |
| 97 | 1+(−11+11i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.78000155244330814722909761744, −9.595837863586471341676557871521, −8.973402191308713849250181184958, −8.277194263967601432643402914382, −7.80462613316474300730407221303, −6.11135016692257192349242371734, −4.93993805467126066029941428681, −3.97752863634768898288480899700, −3.46382502047251490782923274322, −1.85686263916154129754932742731,
1.16603695945558309403988358106, 2.37312902068764667396529395229, 3.74578683485653843943465030451, 4.34712349221846685579644102941, 6.47946745621833698467095916299, 6.93457328775907997463927279719, 7.76502993630664451722651564132, 8.507285587563172611323430280318, 9.106066377149385055643637010456, 10.49953090973320678114938046979