L(s) = 1 | + (2 + 2i)3-s + (−2 − i)5-s + (2 + 2i)7-s + 5i·9-s + 4·11-s + (3 − 3i)13-s + (−2 − 6i)15-s + (−3 + 3i)17-s + 8i·21-s + (−6 + 6i)23-s + (3 + 4i)25-s + (−4 + 4i)27-s − 2·29-s − 4i·31-s + (8 + 8i)33-s + ⋯ |
L(s) = 1 | + (1.15 + 1.15i)3-s + (−0.894 − 0.447i)5-s + (0.755 + 0.755i)7-s + 1.66i·9-s + 1.20·11-s + (0.832 − 0.832i)13-s + (−0.516 − 1.54i)15-s + (−0.727 + 0.727i)17-s + 1.74i·21-s + (−1.25 + 1.25i)23-s + (0.600 + 0.800i)25-s + (−0.769 + 0.769i)27-s − 0.371·29-s − 0.718i·31-s + (1.39 + 1.39i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.229 - 0.973i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.229 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.64644 + 1.30302i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.64644 + 1.30302i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (2 + i)T \) |
good | 3 | \( 1 + (-2 - 2i)T + 3iT^{2} \) |
| 7 | \( 1 + (-2 - 2i)T + 7iT^{2} \) |
| 11 | \( 1 - 4T + 11T^{2} \) |
| 13 | \( 1 + (-3 + 3i)T - 13iT^{2} \) |
| 17 | \( 1 + (3 - 3i)T - 17iT^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + (6 - 6i)T - 23iT^{2} \) |
| 29 | \( 1 + 2T + 29T^{2} \) |
| 31 | \( 1 + 4iT - 31T^{2} \) |
| 37 | \( 1 + (-3 - 3i)T + 37iT^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 + (6 + 6i)T + 43iT^{2} \) |
| 47 | \( 1 + (-6 - 6i)T + 47iT^{2} \) |
| 53 | \( 1 + (3 - 3i)T - 53iT^{2} \) |
| 59 | \( 1 + 8iT - 59T^{2} \) |
| 61 | \( 1 + 6iT - 61T^{2} \) |
| 67 | \( 1 + (-6 + 6i)T - 67iT^{2} \) |
| 71 | \( 1 + 12iT - 71T^{2} \) |
| 73 | \( 1 + (5 + 5i)T + 73iT^{2} \) |
| 79 | \( 1 - 8T + 79T^{2} \) |
| 83 | \( 1 + (-6 - 6i)T + 83iT^{2} \) |
| 89 | \( 1 - 89T^{2} \) |
| 97 | \( 1 + (-11 + 11i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.78000155244330814722909761744, −9.595837863586471341676557871521, −8.973402191308713849250181184958, −8.277194263967601432643402914382, −7.80462613316474300730407221303, −6.11135016692257192349242371734, −4.93993805467126066029941428681, −3.97752863634768898288480899700, −3.46382502047251490782923274322, −1.85686263916154129754932742731,
1.16603695945558309403988358106, 2.37312902068764667396529395229, 3.74578683485653843943465030451, 4.34712349221846685579644102941, 6.47946745621833698467095916299, 6.93457328775907997463927279719, 7.76502993630664451722651564132, 8.507285587563172611323430280318, 9.106066377149385055643637010456, 10.49953090973320678114938046979