Properties

Label 2-640-1.1-c3-0-26
Degree $2$
Conductor $640$
Sign $-1$
Analytic cond. $37.7612$
Root an. cond. $6.14501$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·3-s + 5·5-s − 2·7-s + 37·9-s − 22·11-s + 10·13-s − 40·15-s + 10·17-s − 110·19-s + 16·21-s + 154·23-s + 25·25-s − 80·27-s + 222·29-s + 92·31-s + 176·33-s − 10·35-s − 34·37-s − 80·39-s + 398·41-s − 268·43-s + 185·45-s + 10·47-s − 339·49-s − 80·51-s − 582·53-s − 110·55-s + ⋯
L(s)  = 1  − 1.53·3-s + 0.447·5-s − 0.107·7-s + 1.37·9-s − 0.603·11-s + 0.213·13-s − 0.688·15-s + 0.142·17-s − 1.32·19-s + 0.166·21-s + 1.39·23-s + 1/5·25-s − 0.570·27-s + 1.42·29-s + 0.533·31-s + 0.928·33-s − 0.0482·35-s − 0.151·37-s − 0.328·39-s + 1.51·41-s − 0.950·43-s + 0.612·45-s + 0.0310·47-s − 0.988·49-s − 0.219·51-s − 1.50·53-s − 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(640\)    =    \(2^{7} \cdot 5\)
Sign: $-1$
Analytic conductor: \(37.7612\)
Root analytic conductor: \(6.14501\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 640,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - p T \)
good3 \( 1 + 8 T + p^{3} T^{2} \)
7 \( 1 + 2 T + p^{3} T^{2} \)
11 \( 1 + 2 p T + p^{3} T^{2} \)
13 \( 1 - 10 T + p^{3} T^{2} \)
17 \( 1 - 10 T + p^{3} T^{2} \)
19 \( 1 + 110 T + p^{3} T^{2} \)
23 \( 1 - 154 T + p^{3} T^{2} \)
29 \( 1 - 222 T + p^{3} T^{2} \)
31 \( 1 - 92 T + p^{3} T^{2} \)
37 \( 1 + 34 T + p^{3} T^{2} \)
41 \( 1 - 398 T + p^{3} T^{2} \)
43 \( 1 + 268 T + p^{3} T^{2} \)
47 \( 1 - 10 T + p^{3} T^{2} \)
53 \( 1 + 582 T + p^{3} T^{2} \)
59 \( 1 + 746 T + p^{3} T^{2} \)
61 \( 1 + 226 T + p^{3} T^{2} \)
67 \( 1 - 172 T + p^{3} T^{2} \)
71 \( 1 + 928 T + p^{3} T^{2} \)
73 \( 1 - 570 T + p^{3} T^{2} \)
79 \( 1 + 64 T + p^{3} T^{2} \)
83 \( 1 - 864 T + p^{3} T^{2} \)
89 \( 1 + 874 T + p^{3} T^{2} \)
97 \( 1 - 306 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.05610527338700054369181767966, −8.982791372923607952652750353898, −7.88197632771061044933091515375, −6.61603760641222338062586427192, −6.22854821619418556197304753043, −5.15544073209096385890669609667, −4.51996851136921380719994965930, −2.84286162889573564858687314714, −1.26574578594714129764064180760, 0, 1.26574578594714129764064180760, 2.84286162889573564858687314714, 4.51996851136921380719994965930, 5.15544073209096385890669609667, 6.22854821619418556197304753043, 6.61603760641222338062586427192, 7.88197632771061044933091515375, 8.982791372923607952652750353898, 10.05610527338700054369181767966

Graph of the $Z$-function along the critical line