| L(s)  = 1  |     − 8·3-s     + 5·5-s     − 2·7-s     + 37·9-s     − 22·11-s     + 10·13-s     − 40·15-s     + 10·17-s     − 110·19-s     + 16·21-s     + 154·23-s     + 25·25-s     − 80·27-s     + 222·29-s     + 92·31-s     + 176·33-s     − 10·35-s     − 34·37-s     − 80·39-s     + 398·41-s     − 268·43-s     + 185·45-s     + 10·47-s     − 339·49-s     − 80·51-s     − 582·53-s     − 110·55-s  + ⋯ | 
 
| L(s)  = 1  |     − 1.53·3-s     + 0.447·5-s     − 0.107·7-s     + 1.37·9-s     − 0.603·11-s     + 0.213·13-s     − 0.688·15-s     + 0.142·17-s     − 1.32·19-s     + 0.166·21-s     + 1.39·23-s     + 1/5·25-s     − 0.570·27-s     + 1.42·29-s     + 0.533·31-s     + 0.928·33-s     − 0.0482·35-s     − 0.151·37-s     − 0.328·39-s     + 1.51·41-s     − 0.950·43-s     + 0.612·45-s     + 0.0310·47-s     − 0.988·49-s     − 0.219·51-s     − 1.50·53-s     − 0.269·55-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(2)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{5}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 2 |  \( 1 \)  | 
 | 5 |  \( 1 - p T \)  | 
| good | 3 |  \( 1 + 8 T + p^{3} T^{2} \)  | 
 | 7 |  \( 1 + 2 T + p^{3} T^{2} \)  | 
 | 11 |  \( 1 + 2 p T + p^{3} T^{2} \)  | 
 | 13 |  \( 1 - 10 T + p^{3} T^{2} \)  | 
 | 17 |  \( 1 - 10 T + p^{3} T^{2} \)  | 
 | 19 |  \( 1 + 110 T + p^{3} T^{2} \)  | 
 | 23 |  \( 1 - 154 T + p^{3} T^{2} \)  | 
 | 29 |  \( 1 - 222 T + p^{3} T^{2} \)  | 
 | 31 |  \( 1 - 92 T + p^{3} T^{2} \)  | 
 | 37 |  \( 1 + 34 T + p^{3} T^{2} \)  | 
 | 41 |  \( 1 - 398 T + p^{3} T^{2} \)  | 
 | 43 |  \( 1 + 268 T + p^{3} T^{2} \)  | 
 | 47 |  \( 1 - 10 T + p^{3} T^{2} \)  | 
 | 53 |  \( 1 + 582 T + p^{3} T^{2} \)  | 
 | 59 |  \( 1 + 746 T + p^{3} T^{2} \)  | 
 | 61 |  \( 1 + 226 T + p^{3} T^{2} \)  | 
 | 67 |  \( 1 - 172 T + p^{3} T^{2} \)  | 
 | 71 |  \( 1 + 928 T + p^{3} T^{2} \)  | 
 | 73 |  \( 1 - 570 T + p^{3} T^{2} \)  | 
 | 79 |  \( 1 + 64 T + p^{3} T^{2} \)  | 
 | 83 |  \( 1 - 864 T + p^{3} T^{2} \)  | 
 | 89 |  \( 1 + 874 T + p^{3} T^{2} \)  | 
 | 97 |  \( 1 - 306 T + p^{3} T^{2} \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−10.05610527338700054369181767966, −8.982791372923607952652750353898, −7.88197632771061044933091515375, −6.61603760641222338062586427192, −6.22854821619418556197304753043, −5.15544073209096385890669609667, −4.51996851136921380719994965930, −2.84286162889573564858687314714, −1.26574578594714129764064180760, 0, 
1.26574578594714129764064180760, 2.84286162889573564858687314714, 4.51996851136921380719994965930, 5.15544073209096385890669609667, 6.22854821619418556197304753043, 6.61603760641222338062586427192, 7.88197632771061044933091515375, 8.982791372923607952652750353898, 10.05610527338700054369181767966