L(s) = 1 | + (0.395 + 0.228i)2-s − 2.79·3-s + (−0.895 − 1.55i)4-s + (0.395 − 0.228i)5-s + (−1.10 − 0.637i)6-s − 1.73i·8-s + 4.79·9-s + 0.208·10-s − 3.92i·11-s + (2.5 + 4.33i)12-s + (−3.5 − 0.866i)13-s + (−1.10 + 0.637i)15-s + (−1.39 + 2.41i)16-s + (1.5 + 2.59i)17-s + (1.89 + 1.09i)18-s + 1.37i·19-s + ⋯ |
L(s) = 1 | + (0.279 + 0.161i)2-s − 1.61·3-s + (−0.447 − 0.775i)4-s + (0.176 − 0.102i)5-s + (−0.450 − 0.260i)6-s − 0.612i·8-s + 1.59·9-s + 0.0660·10-s − 1.18i·11-s + (0.721 + 1.24i)12-s + (−0.970 − 0.240i)13-s + (−0.285 + 0.164i)15-s + (−0.348 + 0.604i)16-s + (0.363 + 0.630i)17-s + (0.446 + 0.257i)18-s + 0.314i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.794 - 0.606i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.794 - 0.606i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (3.5 + 0.866i)T \) |
good | 2 | \( 1 + (-0.395 - 0.228i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + 2.79T + 3T^{2} \) |
| 5 | \( 1 + (-0.395 + 0.228i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + 3.92iT - 11T^{2} \) |
| 17 | \( 1 + (-1.5 - 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 - 1.37iT - 19T^{2} \) |
| 23 | \( 1 + (-0.791 + 1.37i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.39 - 5.88i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (7.5 + 4.33i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (6 + 3.46i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (6.79 - 3.92i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.68 - 8.11i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (8.29 - 4.78i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (3.08 - 5.33i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-10.6 + 6.15i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 - 14.7T + 61T^{2} \) |
| 67 | \( 1 + 4.47iT - 67T^{2} \) |
| 71 | \( 1 + (-3.79 - 2.18i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-3 - 1.73i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-3 - 5.19i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 7.02iT - 83T^{2} \) |
| 89 | \( 1 + (13.9 + 8.07i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.31 - 3.64i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.20743402819269398667772228648, −9.514966218346523668108605171196, −8.303402142257381408112723300160, −6.95645538376390165431511026074, −6.17124881041506771497473506334, −5.40875844360904347246112804037, −4.98262095179010938913852051827, −3.63688282479232588270682973216, −1.38228298275911195473528000535, 0,
2.19183216262703043005804863449, 3.83316924665352311824692119410, 5.00027443910550228092071050657, 5.21519282429262463344276603999, 6.80135741074868912472326485978, 7.18905558440256622046945218427, 8.456586967780593685694132406645, 9.768161421122547893614309885470, 10.18236098644826566047376551066