L(s) = 1 | − 0.456i·2-s + (1.39 − 2.41i)3-s + 1.79·4-s + (−0.395 − 0.228i)5-s + (−1.10 − 0.637i)6-s − 1.73i·8-s + (−2.39 − 4.14i)9-s + (−0.104 + 0.180i)10-s + (3.39 + 1.96i)11-s + (2.5 − 4.33i)12-s + (−3.5 − 0.866i)13-s + (−1.10 + 0.637i)15-s + 2.79·16-s − 3·17-s + (−1.89 + 1.09i)18-s + (1.18 − 0.685i)19-s + ⋯ |
L(s) = 1 | − 0.323i·2-s + (0.805 − 1.39i)3-s + 0.895·4-s + (−0.176 − 0.102i)5-s + (−0.450 − 0.260i)6-s − 0.612i·8-s + (−0.798 − 1.38i)9-s + (−0.0330 + 0.0571i)10-s + (1.02 + 0.591i)11-s + (0.721 − 1.25i)12-s + (−0.970 − 0.240i)13-s + (−0.285 + 0.164i)15-s + 0.697·16-s − 0.727·17-s + (−0.446 + 0.257i)18-s + (0.272 − 0.157i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.372+0.927i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.372+0.927i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.372+0.927i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(569,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.372+0.927i)
|
Particular Values
L(1) |
≈ |
1.28034−1.89444i |
L(21) |
≈ |
1.28034−1.89444i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(3.5+0.866i)T |
good | 2 | 1+0.456iT−2T2 |
| 3 | 1+(−1.39+2.41i)T+(−1.5−2.59i)T2 |
| 5 | 1+(0.395+0.228i)T+(2.5+4.33i)T2 |
| 11 | 1+(−3.39−1.96i)T+(5.5+9.52i)T2 |
| 17 | 1+3T+17T2 |
| 19 | 1+(−1.18+0.685i)T+(9.5−16.4i)T2 |
| 23 | 1+1.58T+23T2 |
| 29 | 1+(−3.39−5.88i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−7.5+4.33i)T+(15.5−26.8i)T2 |
| 37 | 1−6.92iT−37T2 |
| 41 | 1+(6.79−3.92i)T+(20.5−35.5i)T2 |
| 43 | 1+(4.68−8.11i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−8.29−4.78i)T+(23.5+40.7i)T2 |
| 53 | 1+(3.08+5.33i)T+(−26.5+45.8i)T2 |
| 59 | 1−12.3iT−59T2 |
| 61 | 1+(7.37+12.7i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−3.87−2.23i)T+(33.5+58.0i)T2 |
| 71 | 1+(−3.79−2.18i)T+(35.5+61.4i)T2 |
| 73 | 1+(3−1.73i)T+(36.5−63.2i)T2 |
| 79 | 1+(−3+5.19i)T+(−39.5−68.4i)T2 |
| 83 | 1+7.02iT−83T2 |
| 89 | 1−16.1iT−89T2 |
| 97 | 1+(−6.31−3.64i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.25456436509819797530968980076, −9.438330609683080154154176879487, −8.296139100345401163773963796824, −7.65603876875911550180234183376, −6.73026388398757019681449655512, −6.39050970461606434915508643514, −4.56559258033460906841430322472, −3.10690378896087616522524560119, −2.26865212919591692733733551697, −1.24420679570262469178396602579,
2.20527056451832008666077908539, 3.29720734956952129651356291656, 4.18422274463419537881382882272, 5.28170885232712290420499610630, 6.42883799761839721886692724428, 7.37334985932552469135494613465, 8.394337084916896903891577095202, 9.088761147536696557379497046712, 9.995010186324360782261770556849, 10.65113141764913839070341471393