L(s) = 1 | − 0.456i·2-s + (1.39 − 2.41i)3-s + 1.79·4-s + (−0.395 − 0.228i)5-s + (−1.10 − 0.637i)6-s − 1.73i·8-s + (−2.39 − 4.14i)9-s + (−0.104 + 0.180i)10-s + (3.39 + 1.96i)11-s + (2.5 − 4.33i)12-s + (−3.5 − 0.866i)13-s + (−1.10 + 0.637i)15-s + 2.79·16-s − 3·17-s + (−1.89 + 1.09i)18-s + (1.18 − 0.685i)19-s + ⋯ |
L(s) = 1 | − 0.323i·2-s + (0.805 − 1.39i)3-s + 0.895·4-s + (−0.176 − 0.102i)5-s + (−0.450 − 0.260i)6-s − 0.612i·8-s + (−0.798 − 1.38i)9-s + (−0.0330 + 0.0571i)10-s + (1.02 + 0.591i)11-s + (0.721 − 1.25i)12-s + (−0.970 − 0.240i)13-s + (−0.285 + 0.164i)15-s + 0.697·16-s − 0.727·17-s + (−0.446 + 0.257i)18-s + (0.272 − 0.157i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.372 + 0.927i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.372 + 0.927i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.28034 - 1.89444i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.28034 - 1.89444i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (3.5 + 0.866i)T \) |
good | 2 | \( 1 + 0.456iT - 2T^{2} \) |
| 3 | \( 1 + (-1.39 + 2.41i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (0.395 + 0.228i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-3.39 - 1.96i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + 3T + 17T^{2} \) |
| 19 | \( 1 + (-1.18 + 0.685i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 1.58T + 23T^{2} \) |
| 29 | \( 1 + (-3.39 - 5.88i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-7.5 + 4.33i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 6.92iT - 37T^{2} \) |
| 41 | \( 1 + (6.79 - 3.92i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.68 - 8.11i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-8.29 - 4.78i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3.08 + 5.33i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 12.3iT - 59T^{2} \) |
| 61 | \( 1 + (7.37 + 12.7i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.87 - 2.23i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-3.79 - 2.18i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (3 - 1.73i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3 + 5.19i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 7.02iT - 83T^{2} \) |
| 89 | \( 1 - 16.1iT - 89T^{2} \) |
| 97 | \( 1 + (-6.31 - 3.64i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.25456436509819797530968980076, −9.438330609683080154154176879487, −8.296139100345401163773963796824, −7.65603876875911550180234183376, −6.73026388398757019681449655512, −6.39050970461606434915508643514, −4.56559258033460906841430322472, −3.10690378896087616522524560119, −2.26865212919591692733733551697, −1.24420679570262469178396602579,
2.20527056451832008666077908539, 3.29720734956952129651356291656, 4.18422274463419537881382882272, 5.28170885232712290420499610630, 6.42883799761839721886692724428, 7.37334985932552469135494613465, 8.394337084916896903891577095202, 9.088761147536696557379497046712, 9.995010186324360782261770556849, 10.65113141764913839070341471393