L(s) = 1 | + 1.85·2-s + (1.14 − 1.98i)3-s + 1.45·4-s + (−0.0986 + 0.170i)5-s + (2.13 − 3.69i)6-s − 1.01·8-s + (−1.13 − 1.95i)9-s + (−0.183 + 0.317i)10-s + (2.09 − 3.62i)11-s + (1.66 − 2.88i)12-s + (2.72 − 2.36i)13-s + (0.226 + 0.392i)15-s − 4.79·16-s − 0.841·17-s + (−2.10 − 3.64i)18-s + (0.675 + 1.17i)19-s + ⋯ |
L(s) = 1 | + 1.31·2-s + (0.662 − 1.14i)3-s + 0.726·4-s + (−0.0441 + 0.0764i)5-s + (0.870 − 1.50i)6-s − 0.359·8-s + (−0.377 − 0.653i)9-s + (−0.0579 + 0.100i)10-s + (0.630 − 1.09i)11-s + (0.481 − 0.833i)12-s + (0.755 − 0.655i)13-s + (0.0584 + 0.101i)15-s − 1.19·16-s − 0.204·17-s + (−0.495 − 0.858i)18-s + (0.155 + 0.268i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.326+0.945i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.326+0.945i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.326+0.945i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(471,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), 0.326+0.945i)
|
Particular Values
L(1) |
≈ |
2.76310−1.96802i |
L(21) |
≈ |
2.76310−1.96802i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(−2.72+2.36i)T |
good | 2 | 1−1.85T+2T2 |
| 3 | 1+(−1.14+1.98i)T+(−1.5−2.59i)T2 |
| 5 | 1+(0.0986−0.170i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−2.09+3.62i)T+(−5.5−9.52i)T2 |
| 17 | 1+0.841T+17T2 |
| 19 | 1+(−0.675−1.17i)T+(−9.5+16.4i)T2 |
| 23 | 1+4.11T+23T2 |
| 29 | 1+(−4.11−7.13i)T+(−14.5+25.1i)T2 |
| 31 | 1+(0.640+1.10i)T+(−15.5+26.8i)T2 |
| 37 | 1−3.04T+37T2 |
| 41 | 1+(−2.69−4.67i)T+(−20.5+35.5i)T2 |
| 43 | 1+(2.66−4.61i)T+(−21.5−37.2i)T2 |
| 47 | 1+(5.83−10.1i)T+(−23.5−40.7i)T2 |
| 53 | 1+(2.32+4.02i)T+(−26.5+45.8i)T2 |
| 59 | 1+6.05T+59T2 |
| 61 | 1+(5.68+9.84i)T+(−30.5+52.8i)T2 |
| 67 | 1+(6.69−11.6i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−2.98+5.17i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−1.94−3.36i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−5.36+9.29i)T+(−39.5−68.4i)T2 |
| 83 | 1+3.07T+83T2 |
| 89 | 1−11.9T+89T2 |
| 97 | 1+(−9.73+16.8i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.80299919888429879540466033297, −9.285364602641729560173425186695, −8.473347051660821810571517236639, −7.70398477176143873328067776235, −6.48482440125680120288174421588, −6.07070325171585040219128455524, −4.83566968034486254794606180293, −3.50589051999421539977626693469, −2.92934278500421617752703630122, −1.35379884565889016145538646438,
2.28768504223823744189439885375, 3.52683143997779211880704356583, 4.28984917111468093101783385148, 4.71266604731963780440994132550, 6.05258996623747266684443541089, 6.87880661546915129576860941141, 8.347550413156564810009952289595, 9.157619770806648842696099015142, 9.806744252244703481406170170786, 10.76589926642652659522782672458