L(s) = 1 | + 1.55·2-s + (−0.244 + 0.423i)3-s + 0.417·4-s + (−0.595 + 1.03i)5-s + (−0.380 + 0.658i)6-s − 2.46·8-s + (1.38 + 2.39i)9-s + (−0.926 + 1.60i)10-s + (−1.05 + 1.83i)11-s + (−0.102 + 0.176i)12-s + (−2.86 + 2.19i)13-s + (−0.291 − 0.504i)15-s − 4.66·16-s + 0.906·17-s + (2.14 + 3.71i)18-s + (3.34 + 5.79i)19-s + ⋯ |
L(s) = 1 | + 1.09·2-s + (−0.141 + 0.244i)3-s + 0.208·4-s + (−0.266 + 0.461i)5-s + (−0.155 + 0.268i)6-s − 0.870·8-s + (0.460 + 0.796i)9-s + (−0.292 + 0.507i)10-s + (−0.319 + 0.552i)11-s + (−0.0294 + 0.0510i)12-s + (−0.793 + 0.608i)13-s + (−0.0752 − 0.130i)15-s − 1.16·16-s + 0.219·17-s + (0.505 + 0.876i)18-s + (0.767 + 1.32i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.268 - 0.963i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.268 - 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.05059 + 1.38367i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.05059 + 1.38367i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (2.86 - 2.19i)T \) |
good | 2 | \( 1 - 1.55T + 2T^{2} \) |
| 3 | \( 1 + (0.244 - 0.423i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (0.595 - 1.03i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (1.05 - 1.83i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 0.906T + 17T^{2} \) |
| 19 | \( 1 + (-3.34 - 5.79i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 3.59T + 23T^{2} \) |
| 29 | \( 1 + (4.25 + 7.37i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (2.64 + 4.57i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 4.99T + 37T^{2} \) |
| 41 | \( 1 + (-0.768 - 1.33i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.71 - 4.70i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (1.59 - 2.75i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.41 - 2.44i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 10.2T + 59T^{2} \) |
| 61 | \( 1 + (4.13 + 7.16i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.87 + 3.24i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.26 + 2.19i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (2.86 + 4.96i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.03 - 5.25i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 11.6T + 83T^{2} \) |
| 89 | \( 1 - 17.7T + 89T^{2} \) |
| 97 | \( 1 + (-3.10 + 5.37i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.08922256377407350331294049988, −9.907021761462274089912152266783, −9.431419963703301765679049554934, −7.88465878733558393149803126249, −7.28220558239053534132761585925, −6.06752245710807649410161224535, −5.14063902093025445240801740250, −4.41442896698131473722950264766, −3.45383237494748981207863400597, −2.19552020756986417624906489263,
0.67884128888582850562125857081, 2.83753304758176781872754146496, 3.72153108531731210608303627082, 4.94774256411562402689407929659, 5.39645820829989256143748470615, 6.64391923467102880203191589847, 7.40500887817173082708220923635, 8.730845689736413346798672044120, 9.299045005104852698129239204665, 10.46486232191646506085354736734