L(s) = 1 | + (−1.09 − 1.89i)2-s + (0.879 − 1.52i)3-s + (−1.38 + 2.39i)4-s + (1.05 + 1.82i)5-s − 3.83·6-s + 1.67·8-s + (−0.0460 − 0.0797i)9-s + (2.30 − 3.99i)10-s + (2.88 − 4.99i)11-s + (2.43 + 4.21i)12-s − 13-s + 3.71·15-s + (0.939 + 1.62i)16-s + (0.820 − 1.42i)17-s + (−0.100 + 0.174i)18-s + (−1.33 − 2.31i)19-s + ⋯ |
L(s) = 1 | + (−0.771 − 1.33i)2-s + (0.507 − 0.879i)3-s + (−0.691 + 1.19i)4-s + (0.471 + 0.817i)5-s − 1.56·6-s + 0.591·8-s + (−0.0153 − 0.0265i)9-s + (0.728 − 1.26i)10-s + (0.869 − 1.50i)11-s + (0.702 + 1.21i)12-s − 0.277·13-s + 0.958·15-s + (0.234 + 0.406i)16-s + (0.198 − 0.344i)17-s + (−0.0236 + 0.0410i)18-s + (−0.306 − 0.530i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.947+0.318i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.947+0.318i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.947+0.318i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(508,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.947+0.318i)
|
Particular Values
L(1) |
≈ |
0.194151−1.18713i |
L(21) |
≈ |
0.194151−1.18713i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+T |
good | 2 | 1+(1.09+1.89i)T+(−1+1.73i)T2 |
| 3 | 1+(−0.879+1.52i)T+(−1.5−2.59i)T2 |
| 5 | 1+(−1.05−1.82i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−2.88+4.99i)T+(−5.5−9.52i)T2 |
| 17 | 1+(−0.820+1.42i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1.33+2.31i)T+(−9.5+16.4i)T2 |
| 23 | 1+(3.21+5.56i)T+(−11.5+19.9i)T2 |
| 29 | 1+6.04T+29T2 |
| 31 | 1+(−2.56+4.43i)T+(−15.5−26.8i)T2 |
| 37 | 1+(2.87+4.97i)T+(−18.5+32.0i)T2 |
| 41 | 1−7.14T+41T2 |
| 43 | 1+4.47T+43T2 |
| 47 | 1+(−5.89−10.2i)T+(−23.5+40.7i)T2 |
| 53 | 1+(1.72−2.98i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−6.59+11.4i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−3.12−5.40i)T+(−30.5+52.8i)T2 |
| 67 | 1+(3.87−6.70i)T+(−33.5−58.0i)T2 |
| 71 | 1−13.6T+71T2 |
| 73 | 1+(7.75−13.4i)T+(−36.5−63.2i)T2 |
| 79 | 1+(0.561+0.971i)T+(−39.5+68.4i)T2 |
| 83 | 1+4.96T+83T2 |
| 89 | 1+(−0.573−0.992i)T+(−44.5+77.0i)T2 |
| 97 | 1−6.97T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.32722345106143925351662677287, −9.370077566814129526873652076358, −8.648623607312374155165243981327, −7.85393730178682292883308460848, −6.74384502107590723426557680719, −5.93101955299640339810650154856, −3.98695217612706761310461563794, −2.80787146396598819215575541938, −2.22785786452515907565182451515, −0.853671758562385527432953524487,
1.62522407169955369505322153151, 3.69571411363732470667833999736, 4.73155189098100163473561871852, 5.60589964704065411291038783734, 6.69792323491332796414820081447, 7.51000306532162450512909826561, 8.530418744560861332241066980316, 9.192181146286901120380174530537, 9.723238677073559872716231636619, 10.22940627416415395709724418238