L(s) = 1 | + (1.32 − 2.29i)2-s + (−1.19 − 2.07i)3-s + (−2.52 − 4.37i)4-s + (−1.82 + 3.16i)5-s − 6.36·6-s − 8.10·8-s + (−1.37 + 2.37i)9-s + (4.85 + 8.40i)10-s + (−0.327 − 0.567i)11-s + (−6.05 + 10.4i)12-s − 13-s + 8.75·15-s + (−5.70 + 9.88i)16-s + (−1.19 − 2.07i)17-s + (3.63 + 6.30i)18-s + (1.35 − 2.34i)19-s + ⋯ |
L(s) = 1 | + (0.938 − 1.62i)2-s + (−0.691 − 1.19i)3-s + (−1.26 − 2.18i)4-s + (−0.817 + 1.41i)5-s − 2.59·6-s − 2.86·8-s + (−0.456 + 0.791i)9-s + (1.53 + 2.65i)10-s + (−0.0988 − 0.171i)11-s + (−1.74 + 3.02i)12-s − 0.277·13-s + 2.26·15-s + (−1.42 + 2.47i)16-s + (−0.290 − 0.503i)17-s + (0.857 + 1.48i)18-s + (0.310 − 0.537i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.605−0.795i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.605−0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.605−0.795i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(79,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), 0.605−0.795i)
|
Particular Values
L(1) |
≈ |
0.408789+0.202647i |
L(21) |
≈ |
0.408789+0.202647i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+T |
good | 2 | 1+(−1.32+2.29i)T+(−1−1.73i)T2 |
| 3 | 1+(1.19+2.07i)T+(−1.5+2.59i)T2 |
| 5 | 1+(1.82−3.16i)T+(−2.5−4.33i)T2 |
| 11 | 1+(0.327+0.567i)T+(−5.5+9.52i)T2 |
| 17 | 1+(1.19+2.07i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−1.35+2.34i)T+(−9.5−16.4i)T2 |
| 23 | 1+(3.68−6.37i)T+(−11.5−19.9i)T2 |
| 29 | 1+0.208T+29T2 |
| 31 | 1+(−0.568−0.984i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−3.72+6.44i)T+(−18.5−32.0i)T2 |
| 41 | 1+10.2T+41T2 |
| 43 | 1+3.10T+43T2 |
| 47 | 1+(2.30−3.98i)T+(−23.5−40.7i)T2 |
| 53 | 1+(2.62+4.55i)T+(−26.5+45.8i)T2 |
| 59 | 1+(4.12+7.15i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−0.948+1.64i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−6.44−11.1i)T+(−33.5+58.0i)T2 |
| 71 | 1+6.75T+71T2 |
| 73 | 1+(6.26+10.8i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−0.759+1.31i)T+(−39.5−68.4i)T2 |
| 83 | 1−15.7T+83T2 |
| 89 | 1+(−7.40+12.8i)T+(−44.5−77.0i)T2 |
| 97 | 1+10.0T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.37205698153630817217161212774, −9.440285385431193561552392757425, −7.81455459710515191297329728054, −6.94997380370416874544885279001, −6.10945373788534304965244059756, −5.07571938015031445044820164257, −3.76513866867843848473978182481, −2.92005616738070379685673315941, −1.82461341601746379129452685230, −0.19524746124879706762616610652,
3.64314792404633435687460281059, 4.43055169186965200662577830710, 4.84600175098474077328786385672, 5.63950365973091143030525576815, 6.59877199414082053929289835024, 7.902172242616274661162761795685, 8.378965389340972895748740422468, 9.298603896222744139248339022057, 10.32793182589722236471608852695, 11.72892229826304670095027978906