Properties

Label 2-637-7.2-c1-0-31
Degree $2$
Conductor $637$
Sign $-0.900 + 0.435i$
Analytic cond. $5.08647$
Root an. cond. $2.25532$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.132 + 0.229i)2-s + (−1.45 − 2.51i)3-s + (0.964 + 1.67i)4-s + (0.717 − 1.24i)5-s + 0.769·6-s − 1.03·8-s + (−2.73 + 4.73i)9-s + (0.189 + 0.328i)10-s + (−2.75 − 4.76i)11-s + (2.80 − 4.86i)12-s + 13-s − 4.17·15-s + (−1.79 + 3.10i)16-s + (−2.41 − 4.18i)17-s + (−0.722 − 1.25i)18-s + (−1.41 + 2.44i)19-s + ⋯
L(s)  = 1  + (−0.0935 + 0.162i)2-s + (−0.839 − 1.45i)3-s + (0.482 + 0.835i)4-s + (0.320 − 0.555i)5-s + 0.314·6-s − 0.367·8-s + (−0.910 + 1.57i)9-s + (0.0600 + 0.104i)10-s + (−0.829 − 1.43i)11-s + (0.810 − 1.40i)12-s + 0.277·13-s − 1.07·15-s + (−0.448 + 0.776i)16-s + (−0.585 − 1.01i)17-s + (−0.170 − 0.295i)18-s + (−0.323 + 0.560i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.900 + 0.435i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.900 + 0.435i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(637\)    =    \(7^{2} \cdot 13\)
Sign: $-0.900 + 0.435i$
Analytic conductor: \(5.08647\)
Root analytic conductor: \(2.25532\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{637} (79, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 637,\ (\ :1/2),\ -0.900 + 0.435i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.163431 - 0.712471i\)
\(L(\frac12)\) \(\approx\) \(0.163431 - 0.712471i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 - T \)
good2 \( 1 + (0.132 - 0.229i)T + (-1 - 1.73i)T^{2} \)
3 \( 1 + (1.45 + 2.51i)T + (-1.5 + 2.59i)T^{2} \)
5 \( 1 + (-0.717 + 1.24i)T + (-2.5 - 4.33i)T^{2} \)
11 \( 1 + (2.75 + 4.76i)T + (-5.5 + 9.52i)T^{2} \)
17 \( 1 + (2.41 + 4.18i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (1.41 - 2.44i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-2.99 + 5.19i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 - 1.04T + 29T^{2} \)
31 \( 1 + (4.60 + 7.97i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (0.306 - 0.530i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + 10.6T + 41T^{2} \)
43 \( 1 + 8.43T + 43T^{2} \)
47 \( 1 + (1.20 - 2.08i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (-0.914 - 1.58i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-0.435 - 0.754i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-1.66 + 2.88i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-3.31 - 5.73i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 6.85T + 71T^{2} \)
73 \( 1 + (1.57 + 2.72i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-8.78 + 15.2i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 - 11.4T + 83T^{2} \)
89 \( 1 + (-0.497 + 0.861i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 - 13.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.57904239158398380145782526824, −8.912232684722707099112912743873, −8.283516617743011577983515618205, −7.49459175270699025889316682361, −6.62291071188226911183120661230, −5.94737776280281907394558279812, −4.99699894272297430956876460329, −3.17837679678233812712082468460, −2.00341341663886294148050333056, −0.42196071163705207331399610011, 1.98144921099396773280485559571, 3.41146337650272776619838796079, 4.80829074499015603334781662124, 5.25755305664208659623866457265, 6.38001245810156373846997535465, 7.03566171383749781126618250918, 8.720473748186767436066341546719, 9.698910226026898163280617700433, 10.28329980174148899576477878910, 10.67368721610650524040427815802

Graph of the $Z$-function along the critical line