| L(s) = 1 | + (0.707 − 1.22i)2-s + (−0.707 − 1.22i)3-s + (−0.792 + 1.37i)5-s − 2·6-s + 2.82·8-s + (0.500 − 0.866i)9-s + (1.12 + 1.94i)10-s + (−2.12 − 3.67i)11-s − 13-s + 2.24·15-s + (2.00 − 3.46i)16-s + (−0.707 − 1.22i)17-s + (−0.707 − 1.22i)18-s + (3.62 − 6.27i)19-s − 6·22-s + (2.91 − 5.04i)23-s + ⋯ |
| L(s) = 1 | + (0.499 − 0.866i)2-s + (−0.408 − 0.707i)3-s + (−0.354 + 0.614i)5-s − 0.816·6-s + 0.999·8-s + (0.166 − 0.288i)9-s + (0.354 + 0.614i)10-s + (−0.639 − 1.10i)11-s − 0.277·13-s + 0.579·15-s + (0.500 − 0.866i)16-s + (−0.171 − 0.297i)17-s + (−0.166 − 0.288i)18-s + (0.830 − 1.43i)19-s − 1.27·22-s + (0.607 − 1.05i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.729232 - 1.47103i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.729232 - 1.47103i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 13 | \( 1 + T \) |
| good | 2 | \( 1 + (-0.707 + 1.22i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (0.707 + 1.22i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (0.792 - 1.37i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (2.12 + 3.67i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (0.707 + 1.22i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.62 + 6.27i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.91 + 5.04i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 0.171T + 29T^{2} \) |
| 31 | \( 1 + (1.62 + 2.80i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.12 - 1.94i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 8.82T + 41T^{2} \) |
| 43 | \( 1 + 5T + 43T^{2} \) |
| 47 | \( 1 + (0.792 - 1.37i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.0857 - 0.148i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (0.171 + 0.297i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3 - 5.19i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.24 - 12.5i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 13.0T + 71T^{2} \) |
| 73 | \( 1 + (-4.62 - 8.00i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (7.74 - 13.4i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 13.2T + 83T^{2} \) |
| 89 | \( 1 + (0.792 - 1.37i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 11.7T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.81005655927754517179494615289, −9.637639951544146917254813861506, −8.438587336969318124915373250078, −7.30138030968960101635145609711, −6.93834892555442160158262301177, −5.65125628102944348544439401092, −4.51526380296329360908899372453, −3.25519199638047478425067199214, −2.57718109392760885401424828131, −0.843035439869330365332228107079,
1.75582133398507214641648096402, 3.79209419023328486459927886650, 4.85699648190543861347734672917, 5.14020520497608031039897388308, 6.20273345457375572043241372900, 7.52155129495034149648520088515, 7.78062353921991098753323442338, 9.249022963004694096332893213636, 10.16252421522331386812271899411, 10.64992905560698935619700396110