Properties

Label 2-637-7.2-c1-0-28
Degree $2$
Conductor $637$
Sign $-0.605 + 0.795i$
Analytic cond. $5.08647$
Root an. cond. $2.25532$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 − 1.22i)2-s + (−0.707 − 1.22i)3-s + (−0.792 + 1.37i)5-s − 2·6-s + 2.82·8-s + (0.500 − 0.866i)9-s + (1.12 + 1.94i)10-s + (−2.12 − 3.67i)11-s − 13-s + 2.24·15-s + (2.00 − 3.46i)16-s + (−0.707 − 1.22i)17-s + (−0.707 − 1.22i)18-s + (3.62 − 6.27i)19-s − 6·22-s + (2.91 − 5.04i)23-s + ⋯
L(s)  = 1  + (0.499 − 0.866i)2-s + (−0.408 − 0.707i)3-s + (−0.354 + 0.614i)5-s − 0.816·6-s + 0.999·8-s + (0.166 − 0.288i)9-s + (0.354 + 0.614i)10-s + (−0.639 − 1.10i)11-s − 0.277·13-s + 0.579·15-s + (0.500 − 0.866i)16-s + (−0.171 − 0.297i)17-s + (−0.166 − 0.288i)18-s + (0.830 − 1.43i)19-s − 1.27·22-s + (0.607 − 1.05i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(637\)    =    \(7^{2} \cdot 13\)
Sign: $-0.605 + 0.795i$
Analytic conductor: \(5.08647\)
Root analytic conductor: \(2.25532\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{637} (79, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 637,\ (\ :1/2),\ -0.605 + 0.795i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.729232 - 1.47103i\)
\(L(\frac12)\) \(\approx\) \(0.729232 - 1.47103i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 + T \)
good2 \( 1 + (-0.707 + 1.22i)T + (-1 - 1.73i)T^{2} \)
3 \( 1 + (0.707 + 1.22i)T + (-1.5 + 2.59i)T^{2} \)
5 \( 1 + (0.792 - 1.37i)T + (-2.5 - 4.33i)T^{2} \)
11 \( 1 + (2.12 + 3.67i)T + (-5.5 + 9.52i)T^{2} \)
17 \( 1 + (0.707 + 1.22i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-3.62 + 6.27i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-2.91 + 5.04i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 - 0.171T + 29T^{2} \)
31 \( 1 + (1.62 + 2.80i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (1.12 - 1.94i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 - 8.82T + 41T^{2} \)
43 \( 1 + 5T + 43T^{2} \)
47 \( 1 + (0.792 - 1.37i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (-0.0857 - 0.148i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (0.171 + 0.297i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (3 - 5.19i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-7.24 - 12.5i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 13.0T + 71T^{2} \)
73 \( 1 + (-4.62 - 8.00i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (7.74 - 13.4i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 - 13.2T + 83T^{2} \)
89 \( 1 + (0.792 - 1.37i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 - 11.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.81005655927754517179494615289, −9.637639951544146917254813861506, −8.438587336969318124915373250078, −7.30138030968960101635145609711, −6.93834892555442160158262301177, −5.65125628102944348544439401092, −4.51526380296329360908899372453, −3.25519199638047478425067199214, −2.57718109392760885401424828131, −0.843035439869330365332228107079, 1.75582133398507214641648096402, 3.79209419023328486459927886650, 4.85699648190543861347734672917, 5.14020520497608031039897388308, 6.20273345457375572043241372900, 7.52155129495034149648520088515, 7.78062353921991098753323442338, 9.249022963004694096332893213636, 10.16252421522331386812271899411, 10.64992905560698935619700396110

Graph of the $Z$-function along the critical line