L(s) = 1 | + (0.588 − 1.01i)2-s + (1.67 + 2.90i)3-s + (0.308 + 0.533i)4-s + (1.57 − 2.72i)5-s + 3.94·6-s + 3.07·8-s + (−4.11 + 7.12i)9-s + (−1.85 − 3.20i)10-s + (0.386 + 0.669i)11-s + (−1.03 + 1.78i)12-s − 13-s + 10.5·15-s + (1.19 − 2.06i)16-s + (−2.87 − 4.98i)17-s + (4.83 + 8.38i)18-s + (−0.611 + 1.05i)19-s + ⋯ |
L(s) = 1 | + (0.415 − 0.720i)2-s + (0.967 + 1.67i)3-s + (0.154 + 0.266i)4-s + (0.704 − 1.21i)5-s + 1.60·6-s + 1.08·8-s + (−1.37 + 2.37i)9-s + (−0.585 − 1.01i)10-s + (0.116 + 0.201i)11-s + (−0.298 + 0.516i)12-s − 0.277·13-s + 2.72·15-s + (0.298 − 0.516i)16-s + (−0.697 − 1.20i)17-s + (1.14 + 1.97i)18-s + (−0.140 + 0.242i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.900−0.435i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.900−0.435i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.900−0.435i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(79,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), 0.900−0.435i)
|
Particular Values
L(1) |
≈ |
2.88270+0.661254i |
L(21) |
≈ |
2.88270+0.661254i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+T |
good | 2 | 1+(−0.588+1.01i)T+(−1−1.73i)T2 |
| 3 | 1+(−1.67−2.90i)T+(−1.5+2.59i)T2 |
| 5 | 1+(−1.57+2.72i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−0.386−0.669i)T+(−5.5+9.52i)T2 |
| 17 | 1+(2.87+4.98i)T+(−8.5+14.7i)T2 |
| 19 | 1+(0.611−1.05i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−1.49+2.59i)T+(−11.5−19.9i)T2 |
| 29 | 1+2.46T+29T2 |
| 31 | 1+(3.06+5.31i)T+(−15.5+26.8i)T2 |
| 37 | 1+(2.49−4.32i)T+(−18.5−32.0i)T2 |
| 41 | 1−2.55T+41T2 |
| 43 | 1+2.73T+43T2 |
| 47 | 1+(−2.68+4.65i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−4.89−8.47i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−1.25−2.16i)T+(−29.5+51.0i)T2 |
| 61 | 1+(5.45−9.45i)T+(−30.5−52.8i)T2 |
| 67 | 1+(2.16+3.74i)T+(−33.5+58.0i)T2 |
| 71 | 1−10.6T+71T2 |
| 73 | 1+(2.58+4.48i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−0.271+0.469i)T+(−39.5−68.4i)T2 |
| 83 | 1+15.2T+83T2 |
| 89 | 1+(−4.61+7.99i)T+(−44.5−77.0i)T2 |
| 97 | 1−1.26T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.52497014344781328831634305083, −9.744017161548606273303197717438, −9.109361170913968095149314092274, −8.468389069415162227453078279944, −7.38799817246054000915243844587, −5.49538150347177319738532223989, −4.67743245249855001822238429271, −4.16148743751562304029694319533, −2.94770265265342989769607153119, −2.05415474336061865201920730023,
1.63388226194346806761296036425, 2.41639395086857898846195258357, 3.62247187725756920003582783014, 5.57650120181352931698054555442, 6.39731184263339212083275989287, 6.85144515537506227261058178051, 7.50466951730622590299588007797, 8.458846313270456170985010642466, 9.465149963844054735312610902379, 10.61115729617675603293422268739