L(s) = 1 | + (0.588 − 1.01i)2-s + (1.67 + 2.90i)3-s + (0.308 + 0.533i)4-s + (1.57 − 2.72i)5-s + 3.94·6-s + 3.07·8-s + (−4.11 + 7.12i)9-s + (−1.85 − 3.20i)10-s + (0.386 + 0.669i)11-s + (−1.03 + 1.78i)12-s − 13-s + 10.5·15-s + (1.19 − 2.06i)16-s + (−2.87 − 4.98i)17-s + (4.83 + 8.38i)18-s + (−0.611 + 1.05i)19-s + ⋯ |
L(s) = 1 | + (0.415 − 0.720i)2-s + (0.967 + 1.67i)3-s + (0.154 + 0.266i)4-s + (0.704 − 1.21i)5-s + 1.60·6-s + 1.08·8-s + (−1.37 + 2.37i)9-s + (−0.585 − 1.01i)10-s + (0.116 + 0.201i)11-s + (−0.298 + 0.516i)12-s − 0.277·13-s + 2.72·15-s + (0.298 − 0.516i)16-s + (−0.697 − 1.20i)17-s + (1.14 + 1.97i)18-s + (−0.140 + 0.242i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.900 - 0.435i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.900 - 0.435i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.88270 + 0.661254i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.88270 + 0.661254i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 2 | \( 1 + (-0.588 + 1.01i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-1.67 - 2.90i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.57 + 2.72i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.386 - 0.669i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (2.87 + 4.98i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.611 - 1.05i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.49 + 2.59i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 2.46T + 29T^{2} \) |
| 31 | \( 1 + (3.06 + 5.31i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.49 - 4.32i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 2.55T + 41T^{2} \) |
| 43 | \( 1 + 2.73T + 43T^{2} \) |
| 47 | \( 1 + (-2.68 + 4.65i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.89 - 8.47i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.25 - 2.16i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (5.45 - 9.45i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.16 + 3.74i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 10.6T + 71T^{2} \) |
| 73 | \( 1 + (2.58 + 4.48i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.271 + 0.469i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 15.2T + 83T^{2} \) |
| 89 | \( 1 + (-4.61 + 7.99i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 1.26T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.52497014344781328831634305083, −9.744017161548606273303197717438, −9.109361170913968095149314092274, −8.468389069415162227453078279944, −7.38799817246054000915243844587, −5.49538150347177319738532223989, −4.67743245249855001822238429271, −4.16148743751562304029694319533, −2.94770265265342989769607153119, −2.05415474336061865201920730023,
1.63388226194346806761296036425, 2.41639395086857898846195258357, 3.62247187725756920003582783014, 5.57650120181352931698054555442, 6.39731184263339212083275989287, 6.85144515537506227261058178051, 7.50466951730622590299588007797, 8.458846313270456170985010642466, 9.465149963844054735312610902379, 10.61115729617675603293422268739