L(s) = 1 | + (−0.933 + 1.61i)2-s + (1.67 + 2.90i)3-s + (−0.741 − 1.28i)4-s + (−0.433 + 0.750i)5-s − 6.24·6-s − 0.965·8-s + (−4.10 + 7.11i)9-s + (−0.808 − 1.39i)10-s + (1.93 + 3.34i)11-s + (2.48 − 4.30i)12-s + 13-s − 2.90·15-s + (2.38 − 4.12i)16-s + (1.67 + 2.90i)17-s + (−7.66 − 13.2i)18-s + (2.69 − 4.66i)19-s + ⋯ |
L(s) = 1 | + (−0.659 + 1.14i)2-s + (0.966 + 1.67i)3-s + (−0.370 − 0.642i)4-s + (−0.193 + 0.335i)5-s − 2.55·6-s − 0.341·8-s + (−1.36 + 2.37i)9-s + (−0.255 − 0.442i)10-s + (0.582 + 1.00i)11-s + (0.716 − 1.24i)12-s + 0.277·13-s − 0.748·15-s + (0.595 − 1.03i)16-s + (0.406 + 0.703i)17-s + (−1.80 − 3.12i)18-s + (0.617 − 1.06i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.605+0.795i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.605+0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.605+0.795i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(79,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.605+0.795i)
|
Particular Values
L(1) |
≈ |
0.593492−1.19721i |
L(21) |
≈ |
0.593492−1.19721i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1−T |
good | 2 | 1+(0.933−1.61i)T+(−1−1.73i)T2 |
| 3 | 1+(−1.67−2.90i)T+(−1.5+2.59i)T2 |
| 5 | 1+(0.433−0.750i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−1.93−3.34i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−1.67−2.90i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−2.69+4.66i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−2.62+4.54i)T+(−11.5−19.9i)T2 |
| 29 | 1−1.69T+29T2 |
| 31 | 1+(3.78+6.55i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−2.41+4.18i)T+(−18.5−32.0i)T2 |
| 41 | 1+4.06T+41T2 |
| 43 | 1−4.03T+43T2 |
| 47 | 1+(−1.82+3.16i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−0.107−0.186i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−1.39−2.41i)T+(−29.5+51.0i)T2 |
| 61 | 1+(4.51−7.82i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−3.83−6.63i)T+(−33.5+58.0i)T2 |
| 71 | 1−4.90T+71T2 |
| 73 | 1+(7.77+13.4i)T+(−36.5+63.2i)T2 |
| 79 | 1+(4.71−8.16i)T+(−39.5−68.4i)T2 |
| 83 | 1+4.09T+83T2 |
| 89 | 1+(−0.209+0.362i)T+(−44.5−77.0i)T2 |
| 97 | 1+7.11T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.71835356600618835922273271249, −9.907553015569126528213349535960, −9.169121379783445561005655331658, −8.750255457015012957342084122698, −7.74278982051750506516985948995, −7.02777416599044518470485394884, −5.71582689338271742010158067868, −4.68944052630972722170433019945, −3.71405324026360066855495574597, −2.64590543205261566460566741738,
0.876548290787904101379704083952, 1.58387225089837139744746406110, 2.96550861823738999045185561556, 3.50262948687422162439013602052, 5.72534939361844554467738463343, 6.65225756346038314885482189277, 7.70445469248917101752760524612, 8.475884229959288557371536029933, 8.995400477218640636127098765262, 9.823320444566864810393589312746