Properties

Label 2-637-13.9-c1-0-8
Degree $2$
Conductor $637$
Sign $-0.367 - 0.929i$
Analytic cond. $5.08647$
Root an. cond. $2.25532$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.15 + 1.99i)2-s + (1.08 − 1.87i)3-s + (−1.65 − 2.86i)4-s − 2.16·5-s + (2.49 + 4.32i)6-s + 2.99·8-s + (−0.848 − 1.46i)9-s + (2.49 − 4.32i)10-s + (−2.45 + 4.25i)11-s − 7.15·12-s + (1.41 − 3.31i)13-s + (−2.34 + 4.06i)15-s + (−0.151 + 0.262i)16-s + (3.57 + 6.19i)17-s + 3.90·18-s + (1.08 + 1.87i)19-s + ⋯
L(s)  = 1  + (−0.814 + 1.41i)2-s + (0.625 − 1.08i)3-s + (−0.825 − 1.43i)4-s − 0.969·5-s + (1.01 + 1.76i)6-s + 1.06·8-s + (−0.282 − 0.489i)9-s + (0.789 − 1.36i)10-s + (−0.739 + 1.28i)11-s − 2.06·12-s + (0.391 − 0.920i)13-s + (−0.606 + 1.05i)15-s + (−0.0378 + 0.0655i)16-s + (0.868 + 1.50i)17-s + 0.921·18-s + (0.248 + 0.430i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.367 - 0.929i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.367 - 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(637\)    =    \(7^{2} \cdot 13\)
Sign: $-0.367 - 0.929i$
Analytic conductor: \(5.08647\)
Root analytic conductor: \(2.25532\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{637} (295, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 637,\ (\ :1/2),\ -0.367 - 0.929i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.448164 + 0.659225i\)
\(L(\frac12)\) \(\approx\) \(0.448164 + 0.659225i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 + (-1.41 + 3.31i)T \)
good2 \( 1 + (1.15 - 1.99i)T + (-1 - 1.73i)T^{2} \)
3 \( 1 + (-1.08 + 1.87i)T + (-1.5 - 2.59i)T^{2} \)
5 \( 1 + 2.16T + 5T^{2} \)
11 \( 1 + (2.45 - 4.25i)T + (-5.5 - 9.52i)T^{2} \)
17 \( 1 + (-3.57 - 6.19i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-1.08 - 1.87i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.302 + 0.524i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (-1.15 + 1.99i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 - 7.15T + 31T^{2} \)
37 \( 1 + (4.30 - 7.45i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (4.99 - 8.64i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (-6.25 - 10.8i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 - 1.51T + 47T^{2} \)
53 \( 1 - 2.39T + 53T^{2} \)
59 \( 1 + (1.41 + 2.44i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-2.16 - 3.75i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (0.5 - 0.866i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (2 + 3.46i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 - 4.33T + 73T^{2} \)
79 \( 1 + 6.60T + 79T^{2} \)
83 \( 1 + 2.82T + 83T^{2} \)
89 \( 1 + (-3.25 + 5.63i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (6.83 + 11.8i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.39469348034162513396499151482, −9.829613788433693205944662800233, −8.328687785244360579516862348051, −8.088945163810389734116506738608, −7.64813368552144983755561754417, −6.76181965864321330459666404045, −5.87342808096711618060379949318, −4.60988042769433069862696946943, −3.03620462983589682119790021823, −1.29433465208163791353622359503, 0.60362787116950152001889747997, 2.63077672105226735147720685904, 3.43497354338087349875385977757, 4.07281619270835394406863968169, 5.35580153517349633868254901946, 7.19596858595444057969939025397, 8.266556239537740206000380291653, 8.855536306809945186006042545372, 9.472085181666232473027127419445, 10.39550117063756666459622350137

Graph of the $Z$-function along the critical line