Properties

Label 2-637-13.9-c1-0-8
Degree 22
Conductor 637637
Sign 0.3670.929i-0.367 - 0.929i
Analytic cond. 5.086475.08647
Root an. cond. 2.255322.25532
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.15 + 1.99i)2-s + (1.08 − 1.87i)3-s + (−1.65 − 2.86i)4-s − 2.16·5-s + (2.49 + 4.32i)6-s + 2.99·8-s + (−0.848 − 1.46i)9-s + (2.49 − 4.32i)10-s + (−2.45 + 4.25i)11-s − 7.15·12-s + (1.41 − 3.31i)13-s + (−2.34 + 4.06i)15-s + (−0.151 + 0.262i)16-s + (3.57 + 6.19i)17-s + 3.90·18-s + (1.08 + 1.87i)19-s + ⋯
L(s)  = 1  + (−0.814 + 1.41i)2-s + (0.625 − 1.08i)3-s + (−0.825 − 1.43i)4-s − 0.969·5-s + (1.01 + 1.76i)6-s + 1.06·8-s + (−0.282 − 0.489i)9-s + (0.789 − 1.36i)10-s + (−0.739 + 1.28i)11-s − 2.06·12-s + (0.391 − 0.920i)13-s + (−0.606 + 1.05i)15-s + (−0.0378 + 0.0655i)16-s + (0.868 + 1.50i)17-s + 0.921·18-s + (0.248 + 0.430i)19-s + ⋯

Functional equation

Λ(s)=(637s/2ΓC(s)L(s)=((0.3670.929i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.367 - 0.929i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(637s/2ΓC(s+1/2)L(s)=((0.3670.929i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.367 - 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 637637    =    72137^{2} \cdot 13
Sign: 0.3670.929i-0.367 - 0.929i
Analytic conductor: 5.086475.08647
Root analytic conductor: 2.255322.25532
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ637(295,)\chi_{637} (295, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 637, ( :1/2), 0.3670.929i)(2,\ 637,\ (\ :1/2),\ -0.367 - 0.929i)

Particular Values

L(1)L(1) \approx 0.448164+0.659225i0.448164 + 0.659225i
L(12)L(\frac12) \approx 0.448164+0.659225i0.448164 + 0.659225i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad7 1 1
13 1+(1.41+3.31i)T 1 + (-1.41 + 3.31i)T
good2 1+(1.151.99i)T+(11.73i)T2 1 + (1.15 - 1.99i)T + (-1 - 1.73i)T^{2}
3 1+(1.08+1.87i)T+(1.52.59i)T2 1 + (-1.08 + 1.87i)T + (-1.5 - 2.59i)T^{2}
5 1+2.16T+5T2 1 + 2.16T + 5T^{2}
11 1+(2.454.25i)T+(5.59.52i)T2 1 + (2.45 - 4.25i)T + (-5.5 - 9.52i)T^{2}
17 1+(3.576.19i)T+(8.5+14.7i)T2 1 + (-3.57 - 6.19i)T + (-8.5 + 14.7i)T^{2}
19 1+(1.081.87i)T+(9.5+16.4i)T2 1 + (-1.08 - 1.87i)T + (-9.5 + 16.4i)T^{2}
23 1+(0.302+0.524i)T+(11.519.9i)T2 1 + (-0.302 + 0.524i)T + (-11.5 - 19.9i)T^{2}
29 1+(1.15+1.99i)T+(14.525.1i)T2 1 + (-1.15 + 1.99i)T + (-14.5 - 25.1i)T^{2}
31 17.15T+31T2 1 - 7.15T + 31T^{2}
37 1+(4.307.45i)T+(18.532.0i)T2 1 + (4.30 - 7.45i)T + (-18.5 - 32.0i)T^{2}
41 1+(4.998.64i)T+(20.535.5i)T2 1 + (4.99 - 8.64i)T + (-20.5 - 35.5i)T^{2}
43 1+(6.2510.8i)T+(21.5+37.2i)T2 1 + (-6.25 - 10.8i)T + (-21.5 + 37.2i)T^{2}
47 11.51T+47T2 1 - 1.51T + 47T^{2}
53 12.39T+53T2 1 - 2.39T + 53T^{2}
59 1+(1.41+2.44i)T+(29.5+51.0i)T2 1 + (1.41 + 2.44i)T + (-29.5 + 51.0i)T^{2}
61 1+(2.163.75i)T+(30.5+52.8i)T2 1 + (-2.16 - 3.75i)T + (-30.5 + 52.8i)T^{2}
67 1+(0.50.866i)T+(33.558.0i)T2 1 + (0.5 - 0.866i)T + (-33.5 - 58.0i)T^{2}
71 1+(2+3.46i)T+(35.5+61.4i)T2 1 + (2 + 3.46i)T + (-35.5 + 61.4i)T^{2}
73 14.33T+73T2 1 - 4.33T + 73T^{2}
79 1+6.60T+79T2 1 + 6.60T + 79T^{2}
83 1+2.82T+83T2 1 + 2.82T + 83T^{2}
89 1+(3.25+5.63i)T+(44.577.0i)T2 1 + (-3.25 + 5.63i)T + (-44.5 - 77.0i)T^{2}
97 1+(6.83+11.8i)T+(48.5+84.0i)T2 1 + (6.83 + 11.8i)T + (-48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.39469348034162513396499151482, −9.829613788433693205944662800233, −8.328687785244360579516862348051, −8.088945163810389734116506738608, −7.64813368552144983755561754417, −6.76181965864321330459666404045, −5.87342808096711618060379949318, −4.60988042769433069862696946943, −3.03620462983589682119790021823, −1.29433465208163791353622359503, 0.60362787116950152001889747997, 2.63077672105226735147720685904, 3.43497354338087349875385977757, 4.07281619270835394406863968169, 5.35580153517349633868254901946, 7.19596858595444057969939025397, 8.266556239537740206000380291653, 8.855536306809945186006042545372, 9.472085181666232473027127419445, 10.39550117063756666459622350137

Graph of the ZZ-function along the critical line