L(s) = 1 | + (0.289 − 0.502i)2-s + (−0.946 + 1.63i)3-s + (0.831 + 1.44i)4-s − 1.47·5-s + (0.548 + 0.950i)6-s + 2.12·8-s + (−0.289 − 0.502i)9-s + (−0.427 + 0.739i)10-s + (−0.289 + 0.502i)11-s − 3.14·12-s + (0.128 + 3.60i)13-s + (1.39 − 2.41i)15-s + (−1.04 + 1.81i)16-s + (−0.598 − 1.03i)17-s − 0.336·18-s + (−0.230 − 0.399i)19-s + ⋯ |
L(s) = 1 | + (0.204 − 0.355i)2-s + (−0.546 + 0.946i)3-s + (0.415 + 0.720i)4-s − 0.659·5-s + (0.223 + 0.387i)6-s + 0.751·8-s + (−0.0966 − 0.167i)9-s + (−0.135 + 0.233i)10-s + (−0.0874 + 0.151i)11-s − 0.908·12-s + (0.0357 + 0.999i)13-s + (0.359 − 0.623i)15-s + (−0.261 + 0.453i)16-s + (−0.145 − 0.251i)17-s − 0.0792·18-s + (−0.0528 − 0.0915i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.727 - 0.686i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.727 - 0.686i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.399085 + 1.00493i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.399085 + 1.00493i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (-0.128 - 3.60i)T \) |
good | 2 | \( 1 + (-0.289 + 0.502i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (0.946 - 1.63i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 1.47T + 5T^{2} \) |
| 11 | \( 1 + (0.289 - 0.502i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (0.598 + 1.03i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.230 + 0.399i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.18 - 2.05i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.44 + 5.96i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 4.44T + 31T^{2} \) |
| 37 | \( 1 + (4.58 - 7.93i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (2.00 - 3.47i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.02 + 6.97i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 11.5T + 47T^{2} \) |
| 53 | \( 1 + 9.39T + 53T^{2} \) |
| 59 | \( 1 + (-0.120 - 0.208i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.86 - 6.69i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.724 + 1.25i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-6.25 - 10.8i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 3.69T + 73T^{2} \) |
| 79 | \( 1 - 16.0T + 79T^{2} \) |
| 83 | \( 1 - 15.4T + 83T^{2} \) |
| 89 | \( 1 + (-1.24 + 2.15i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.82 - 13.5i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.03837529637756488341663371640, −10.26441613989497081990904327000, −9.357422373832373561288348639024, −8.239559601105555414767950662217, −7.42354659572144616639578719615, −6.47460325099959838699669638347, −5.09630285376624071631168074955, −4.23106745418238047705361165036, −3.60101682255721948678521297275, −2.11912395278826651169602815346,
0.57451372504531519107677728228, 1.94674195769371218729679271588, 3.61092968301942141433974748126, 5.02601188429501087547840907485, 5.87049528447841512235156233183, 6.63431067836365669826930119731, 7.43126691754633802862319688094, 8.111024057189082023278897882429, 9.412193741088264566844083531002, 10.62569210530784445695300894992