L(s) = 1 | + (1.16 − 2.01i)2-s + (1.15 − 1.99i)3-s + (−1.71 − 2.97i)4-s − 3.37·5-s + (−2.69 − 4.66i)6-s − 3.34·8-s + (−1.16 − 2.01i)9-s + (−3.92 + 6.80i)10-s + (−1.16 + 2.01i)11-s − 7.93·12-s + (−0.408 + 3.58i)13-s + (−3.89 + 6.74i)15-s + (−0.466 + 0.808i)16-s + (−2.72 − 4.72i)17-s − 5.43·18-s + (−3.58 − 6.20i)19-s + ⋯ |
L(s) = 1 | + (0.824 − 1.42i)2-s + (0.666 − 1.15i)3-s + (−0.858 − 1.48i)4-s − 1.50·5-s + (−1.09 − 1.90i)6-s − 1.18·8-s + (−0.388 − 0.673i)9-s + (−1.24 + 2.15i)10-s + (−0.351 + 0.608i)11-s − 2.29·12-s + (−0.113 + 0.993i)13-s + (−1.00 + 1.74i)15-s + (−0.116 + 0.202i)16-s + (−0.661 − 1.14i)17-s − 1.28·18-s + (−0.822 − 1.42i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.617−0.786i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.617−0.786i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.617−0.786i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(295,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.617−0.786i)
|
Particular Values
L(1) |
≈ |
0.763004+1.56906i |
L(21) |
≈ |
0.763004+1.56906i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(0.408−3.58i)T |
good | 2 | 1+(−1.16+2.01i)T+(−1−1.73i)T2 |
| 3 | 1+(−1.15+1.99i)T+(−1.5−2.59i)T2 |
| 5 | 1+3.37T+5T2 |
| 11 | 1+(1.16−2.01i)T+(−5.5−9.52i)T2 |
| 17 | 1+(2.72+4.72i)T+(−8.5+14.7i)T2 |
| 19 | 1+(3.58+6.20i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−3.22+5.58i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−4.22+7.31i)T+(−14.5−25.1i)T2 |
| 31 | 1−3.05T+31T2 |
| 37 | 1+(1.52−2.64i)T+(−18.5−32.0i)T2 |
| 41 | 1+(0.468−0.812i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−2.04−3.54i)T+(−21.5+37.2i)T2 |
| 47 | 1−3.46T+47T2 |
| 53 | 1+2.34T+53T2 |
| 59 | 1+(−3.62−6.27i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−3.19−5.53i)T+(−30.5+52.8i)T2 |
| 67 | 1+(2.30−3.99i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−3.79−6.57i)T+(−35.5+61.4i)T2 |
| 73 | 1−2.06T+73T2 |
| 79 | 1+7.58T+79T2 |
| 83 | 1−2.89T+83T2 |
| 89 | 1+(−6.57+11.3i)T+(−44.5−77.0i)T2 |
| 97 | 1+(1.77+3.08i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.37334963675115886883640711211, −9.131833836278749519188007707735, −8.323103837724361464183753096144, −7.27595283718732150154225342631, −6.71952732512075635881454491976, −4.56515465127455670268489981780, −4.44224781987785919478104501958, −2.82971545980281424348696263257, −2.34584168565053353127241613396, −0.68030151007276984111322096984,
3.38480474173710831417303755515, 3.73248049496366691386196737027, 4.64399925509776697589490132748, 5.54105787324750404658134547920, 6.68238508044801408808555433789, 7.82592208360553833677156465455, 8.238328857462553614457021615018, 8.891813141182626132236092556628, 10.39303988952864120590059028332, 10.90589391464520607817913012072