L(s) = 1 | + (1.16 − 2.01i)2-s + (1.15 − 1.99i)3-s + (−1.71 − 2.97i)4-s − 3.37·5-s + (−2.69 − 4.66i)6-s − 3.34·8-s + (−1.16 − 2.01i)9-s + (−3.92 + 6.80i)10-s + (−1.16 + 2.01i)11-s − 7.93·12-s + (−0.408 + 3.58i)13-s + (−3.89 + 6.74i)15-s + (−0.466 + 0.808i)16-s + (−2.72 − 4.72i)17-s − 5.43·18-s + (−3.58 − 6.20i)19-s + ⋯ |
L(s) = 1 | + (0.824 − 1.42i)2-s + (0.666 − 1.15i)3-s + (−0.858 − 1.48i)4-s − 1.50·5-s + (−1.09 − 1.90i)6-s − 1.18·8-s + (−0.388 − 0.673i)9-s + (−1.24 + 2.15i)10-s + (−0.351 + 0.608i)11-s − 2.29·12-s + (−0.113 + 0.993i)13-s + (−1.00 + 1.74i)15-s + (−0.116 + 0.202i)16-s + (−0.661 − 1.14i)17-s − 1.28·18-s + (−0.822 − 1.42i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.617 - 0.786i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.617 - 0.786i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.763004 + 1.56906i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.763004 + 1.56906i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (0.408 - 3.58i)T \) |
good | 2 | \( 1 + (-1.16 + 2.01i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-1.15 + 1.99i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 3.37T + 5T^{2} \) |
| 11 | \( 1 + (1.16 - 2.01i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (2.72 + 4.72i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.58 + 6.20i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.22 + 5.58i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.22 + 7.31i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 3.05T + 31T^{2} \) |
| 37 | \( 1 + (1.52 - 2.64i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.468 - 0.812i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.04 - 3.54i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 3.46T + 47T^{2} \) |
| 53 | \( 1 + 2.34T + 53T^{2} \) |
| 59 | \( 1 + (-3.62 - 6.27i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.19 - 5.53i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.30 - 3.99i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-3.79 - 6.57i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 2.06T + 73T^{2} \) |
| 79 | \( 1 + 7.58T + 79T^{2} \) |
| 83 | \( 1 - 2.89T + 83T^{2} \) |
| 89 | \( 1 + (-6.57 + 11.3i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1.77 + 3.08i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.37334963675115886883640711211, −9.131833836278749519188007707735, −8.323103837724361464183753096144, −7.27595283718732150154225342631, −6.71952732512075635881454491976, −4.56515465127455670268489981780, −4.44224781987785919478104501958, −2.82971545980281424348696263257, −2.34584168565053353127241613396, −0.68030151007276984111322096984,
3.38480474173710831417303755515, 3.73248049496366691386196737027, 4.64399925509776697589490132748, 5.54105787324750404658134547920, 6.68238508044801408808555433789, 7.82592208360553833677156465455, 8.238328857462553614457021615018, 8.891813141182626132236092556628, 10.39303988952864120590059028332, 10.90589391464520607817913012072