L(s) = 1 | + (−1.21 + 2.10i)2-s + (0.376 − 0.652i)3-s + (−1.95 − 3.39i)4-s − 0.341·5-s + (0.916 + 1.58i)6-s + 4.65·8-s + (1.21 + 2.10i)9-s + (0.415 − 0.719i)10-s + (1.21 − 2.10i)11-s − 2.95·12-s + (−2.50 − 2.59i)13-s + (−0.128 + 0.222i)15-s + (−1.74 + 3.02i)16-s + (−0.974 − 1.68i)17-s − 5.91·18-s + (−3.14 − 5.44i)19-s + ⋯ |
L(s) = 1 | + (−0.859 + 1.48i)2-s + (0.217 − 0.376i)3-s + (−0.978 − 1.69i)4-s − 0.152·5-s + (0.374 + 0.647i)6-s + 1.64·8-s + (0.405 + 0.702i)9-s + (0.131 − 0.227i)10-s + (0.366 − 0.635i)11-s − 0.851·12-s + (−0.693 − 0.720i)13-s + (−0.0332 + 0.0575i)15-s + (−0.437 + 0.757i)16-s + (−0.236 − 0.409i)17-s − 1.39·18-s + (−0.721 − 1.24i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(0.999+0.0251i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(0.999+0.0251i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
0.999+0.0251i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(295,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), 0.999+0.0251i)
|
Particular Values
L(1) |
≈ |
0.755216−0.00948345i |
L(21) |
≈ |
0.755216−0.00948345i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(2.50+2.59i)T |
good | 2 | 1+(1.21−2.10i)T+(−1−1.73i)T2 |
| 3 | 1+(−0.376+0.652i)T+(−1.5−2.59i)T2 |
| 5 | 1+0.341T+5T2 |
| 11 | 1+(−1.21+2.10i)T+(−5.5−9.52i)T2 |
| 17 | 1+(0.974+1.68i)T+(−8.5+14.7i)T2 |
| 19 | 1+(3.14+5.44i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−1.84+3.19i)T+(−11.5−19.9i)T2 |
| 29 | 1+(2.22−3.84i)T+(−14.5−25.1i)T2 |
| 31 | 1−1.97T+31T2 |
| 37 | 1+(−4.81+8.33i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−6.26+10.8i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−4.20−7.28i)T+(−21.5+37.2i)T2 |
| 47 | 1−9.00T+47T2 |
| 53 | 1−1.49T+53T2 |
| 59 | 1+(−0.313−0.542i)T+(−29.5+51.0i)T2 |
| 61 | 1+(0.571+0.990i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−2.79+4.84i)T+(−33.5−58.0i)T2 |
| 71 | 1+(4.74+8.22i)T+(−35.5+61.4i)T2 |
| 73 | 1+11.9T+73T2 |
| 79 | 1−4.47T+79T2 |
| 83 | 1+1.41T+83T2 |
| 89 | 1+(−6.22+10.7i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−5.13−8.90i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.38795564648361009113412217962, −9.220968817348667323199288076063, −8.765335982669256402004550709848, −7.64867495792063346925017572549, −7.37170606598318398420856886119, −6.35436406310115565615875567914, −5.42259412873009241545439419779, −4.41700022553385772334277498546, −2.50453516339212674287377002269, −0.57490128015347619171821733892,
1.40864519121509738458608423867, 2.53676864066042077082901779177, 3.90277145068512753118606146916, 4.30026099293465417809690979946, 6.16414645069413888699547509016, 7.40915010236327681443229541896, 8.332052993484195798280829631030, 9.293994723252685435559612367807, 9.755471450692216214522047065176, 10.35485341885716250528492233085