Properties

Label 2-637-13.4-c1-0-11
Degree 22
Conductor 637637
Sign 0.9640.265i-0.964 - 0.265i
Analytic cond. 5.086475.08647
Root an. cond. 2.255322.25532
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.89 + 1.09i)2-s + (−0.895 + 1.55i)3-s + (1.39 + 2.41i)4-s + 2.18i·5-s + (−3.39 + 1.96i)6-s + 1.73i·8-s + (−0.104 − 0.180i)9-s + (−2.39 + 4.14i)10-s + (−1.10 − 0.637i)11-s − 4.99·12-s + (−3.5 + 0.866i)13-s + (−3.39 − 1.96i)15-s + (0.895 − 1.55i)16-s + (1.5 + 2.59i)17-s − 0.456i·18-s + (5.68 − 3.28i)19-s + ⋯
L(s)  = 1  + (1.34 + 0.773i)2-s + (−0.517 + 0.895i)3-s + (0.697 + 1.20i)4-s + 0.978i·5-s + (−1.38 + 0.800i)6-s + 0.612i·8-s + (−0.0347 − 0.0602i)9-s + (−0.757 + 1.31i)10-s + (−0.332 − 0.192i)11-s − 1.44·12-s + (−0.970 + 0.240i)13-s + (−0.876 − 0.506i)15-s + (0.223 − 0.387i)16-s + (0.363 + 0.630i)17-s − 0.107i·18-s + (1.30 − 0.753i)19-s + ⋯

Functional equation

Λ(s)=(637s/2ΓC(s)L(s)=((0.9640.265i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.964 - 0.265i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(637s/2ΓC(s+1/2)L(s)=((0.9640.265i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.964 - 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 637637    =    72137^{2} \cdot 13
Sign: 0.9640.265i-0.964 - 0.265i
Analytic conductor: 5.086475.08647
Root analytic conductor: 2.255322.25532
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ637(589,)\chi_{637} (589, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 637, ( :1/2), 0.9640.265i)(2,\ 637,\ (\ :1/2),\ -0.964 - 0.265i)

Particular Values

L(1)L(1) \approx 0.321450+2.38260i0.321450 + 2.38260i
L(12)L(\frac12) \approx 0.321450+2.38260i0.321450 + 2.38260i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad7 1 1
13 1+(3.50.866i)T 1 + (3.5 - 0.866i)T
good2 1+(1.891.09i)T+(1+1.73i)T2 1 + (-1.89 - 1.09i)T + (1 + 1.73i)T^{2}
3 1+(0.8951.55i)T+(1.52.59i)T2 1 + (0.895 - 1.55i)T + (-1.5 - 2.59i)T^{2}
5 12.18iT5T2 1 - 2.18iT - 5T^{2}
11 1+(1.10+0.637i)T+(5.5+9.52i)T2 1 + (1.10 + 0.637i)T + (5.5 + 9.52i)T^{2}
17 1+(1.52.59i)T+(8.5+14.7i)T2 1 + (-1.5 - 2.59i)T + (-8.5 + 14.7i)T^{2}
19 1+(5.68+3.28i)T+(9.516.4i)T2 1 + (-5.68 + 3.28i)T + (9.5 - 16.4i)T^{2}
23 1+(3.796.56i)T+(11.519.9i)T2 1 + (3.79 - 6.56i)T + (-11.5 - 19.9i)T^{2}
29 1+(1.10+1.91i)T+(14.525.1i)T2 1 + (-1.10 + 1.91i)T + (-14.5 - 25.1i)T^{2}
31 1+8.66iT31T2 1 + 8.66iT - 31T^{2}
37 1+(63.46i)T+(18.5+32.0i)T2 1 + (-6 - 3.46i)T + (18.5 + 32.0i)T^{2}
41 1+(2.20+1.27i)T+(20.5+35.5i)T2 1 + (2.20 + 1.27i)T + (20.5 + 35.5i)T^{2}
43 1+(2.183.78i)T+(21.5+37.2i)T2 1 + (-2.18 - 3.78i)T + (-21.5 + 37.2i)T^{2}
47 14.28iT47T2 1 - 4.28iT - 47T^{2}
53 1+12.1T+53T2 1 + 12.1T + 53T^{2}
59 1+(7.66+4.42i)T+(29.551.0i)T2 1 + (-7.66 + 4.42i)T + (29.5 - 51.0i)T^{2}
61 1+(6.3711.0i)T+(30.5+52.8i)T2 1 + (-6.37 - 11.0i)T + (-30.5 + 52.8i)T^{2}
67 1+(9.875.70i)T+(33.5+58.0i)T2 1 + (-9.87 - 5.70i)T + (33.5 + 58.0i)T^{2}
71 1+(0.7910.456i)T+(35.561.4i)T2 1 + (0.791 - 0.456i)T + (35.5 - 61.4i)T^{2}
73 13.46iT73T2 1 - 3.46iT - 73T^{2}
79 1+6T+79T2 1 + 6T + 79T^{2}
83 1+3.55iT83T2 1 + 3.55iT - 83T^{2}
89 1+(2.521.45i)T+(44.5+77.0i)T2 1 + (-2.52 - 1.45i)T + (44.5 + 77.0i)T^{2}
97 1+(13.1+7.61i)T+(48.584.0i)T2 1 + (-13.1 + 7.61i)T + (48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.32516336337575174425655259730, −9.967549535086978706515310635288, −9.729257188213040172826199697249, −7.79232937711489151074910999446, −7.28464483994551031939350551727, −6.16473037672556940125161873214, −5.47607828098225386784987627837, −4.64977096967864172658224527500, −3.74252111441710993804958462428, −2.72149990093153078315780972755, 0.946768860521896181542105793764, 2.21130596328021549322311126868, 3.48497073732612541650986951648, 4.82805757096900479260107752463, 5.24256810482218738934865840794, 6.27429343856061941558013860965, 7.34150167552812145586146284221, 8.289297613920826988663679709257, 9.595415179604265629080156151602, 10.43663376236652240744401618521

Graph of the ZZ-function along the critical line