L(s) = 1 | + (−0.395 + 0.228i)2-s + (1.39 + 2.41i)3-s + (−0.895 + 1.55i)4-s + 0.456i·5-s + (−1.10 − 0.637i)6-s − 1.73i·8-s + (−2.39 + 4.14i)9-s + (−0.104 − 0.180i)10-s + (−3.39 + 1.96i)11-s − 5·12-s + (−3.5 − 0.866i)13-s + (−1.10 + 0.637i)15-s + (−1.39 − 2.41i)16-s + (1.5 − 2.59i)17-s − 2.18i·18-s + (−1.18 − 0.685i)19-s + ⋯ |
L(s) = 1 | + (−0.279 + 0.161i)2-s + (0.805 + 1.39i)3-s + (−0.447 + 0.775i)4-s + 0.204i·5-s + (−0.450 − 0.260i)6-s − 0.612i·8-s + (−0.798 + 1.38i)9-s + (−0.0330 − 0.0571i)10-s + (−1.02 + 0.591i)11-s − 1.44·12-s + (−0.970 − 0.240i)13-s + (−0.285 + 0.164i)15-s + (−0.348 − 0.604i)16-s + (0.363 − 0.630i)17-s − 0.515i·18-s + (−0.272 − 0.157i)19-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)(−0.964+0.265i)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)(−0.964+0.265i)Λ(1−s)
Degree: |
2 |
Conductor: |
637
= 72⋅13
|
Sign: |
−0.964+0.265i
|
Analytic conductor: |
5.08647 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ637(491,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 637, ( :1/2), −0.964+0.265i)
|
Particular Values
L(1) |
≈ |
0.139667−1.03522i |
L(21) |
≈ |
0.139667−1.03522i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+(3.5+0.866i)T |
good | 2 | 1+(0.395−0.228i)T+(1−1.73i)T2 |
| 3 | 1+(−1.39−2.41i)T+(−1.5+2.59i)T2 |
| 5 | 1−0.456iT−5T2 |
| 11 | 1+(3.39−1.96i)T+(5.5−9.52i)T2 |
| 17 | 1+(−1.5+2.59i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1.18+0.685i)T+(9.5+16.4i)T2 |
| 23 | 1+(−0.791−1.37i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−3.39−5.88i)T+(−14.5+25.1i)T2 |
| 31 | 1−8.66iT−31T2 |
| 37 | 1+(−6+3.46i)T+(18.5−32.0i)T2 |
| 41 | 1+(6.79−3.92i)T+(20.5−35.5i)T2 |
| 43 | 1+(4.68−8.11i)T+(−21.5−37.2i)T2 |
| 47 | 1+9.57iT−47T2 |
| 53 | 1−6.16T+53T2 |
| 59 | 1+(10.6+6.15i)T+(29.5+51.0i)T2 |
| 61 | 1+(7.37−12.7i)T+(−30.5−52.8i)T2 |
| 67 | 1+(3.87−2.23i)T+(33.5−58.0i)T2 |
| 71 | 1+(−3.79−2.18i)T+(35.5+61.4i)T2 |
| 73 | 1+3.46iT−73T2 |
| 79 | 1+6T+79T2 |
| 83 | 1+7.02iT−83T2 |
| 89 | 1+(−13.9+8.07i)T+(44.5−77.0i)T2 |
| 97 | 1+(−6.31−3.64i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.51282413827887361165080505597, −10.13464250534185857531211473455, −9.258714560175922309285970252515, −8.627512684767130511465316451076, −7.74877425168365594260237677889, −6.98189212705122811679862003759, −4.96206817363485237646196803907, −4.74073964159259720591452148693, −3.29498762492748357425125107314, −2.77811873909924684767672166968,
0.55432840540967627536145525108, 1.92137794749078930091982327511, 2.84146579155933846267424105971, 4.56667528476319610584813868021, 5.72595265434186874292787510418, 6.58528229148462483192431559472, 7.78203428673521880109879486901, 8.233523347732689336078091939567, 9.098994891542534246660322649804, 10.00621174066112442862171343157