L(s) = 1 | − 0.656·2-s − 0.204·3-s − 1.56·4-s − 1.35·5-s + 0.134·6-s + 2.34·8-s − 2.95·9-s + 0.892·10-s − 1.90·11-s + 0.321·12-s + 13-s + 0.278·15-s + 1.60·16-s + 3.56·17-s + 1.94·18-s + 0.985·19-s + 2.13·20-s + 1.25·22-s + 1.69·23-s − 0.479·24-s − 3.15·25-s − 0.656·26-s + 1.21·27-s + 6.54·29-s − 0.182·30-s + 7.69·31-s − 5.73·32-s + ⋯ |
L(s) = 1 | − 0.463·2-s − 0.118·3-s − 0.784·4-s − 0.608·5-s + 0.0548·6-s + 0.828·8-s − 0.986·9-s + 0.282·10-s − 0.574·11-s + 0.0927·12-s + 0.277·13-s + 0.0718·15-s + 0.400·16-s + 0.864·17-s + 0.457·18-s + 0.226·19-s + 0.477·20-s + 0.266·22-s + 0.353·23-s − 0.0978·24-s − 0.630·25-s − 0.128·26-s + 0.234·27-s + 1.21·29-s − 0.0333·30-s + 1.38·31-s − 1.01·32-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.6866795523 |
L(21) |
≈ |
0.6866795523 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1−T |
good | 2 | 1+0.656T+2T2 |
| 3 | 1+0.204T+3T2 |
| 5 | 1+1.35T+5T2 |
| 11 | 1+1.90T+11T2 |
| 17 | 1−3.56T+17T2 |
| 19 | 1−0.985T+19T2 |
| 23 | 1−1.69T+23T2 |
| 29 | 1−6.54T+29T2 |
| 31 | 1−7.69T+31T2 |
| 37 | 1+2.02T+37T2 |
| 41 | 1−9.88T+41T2 |
| 43 | 1+3.16T+43T2 |
| 47 | 1−7.76T+47T2 |
| 53 | 1−0.354T+53T2 |
| 59 | 1−2.16T+59T2 |
| 61 | 1−12.2T+61T2 |
| 67 | 1−11.3T+67T2 |
| 71 | 1+9.05T+71T2 |
| 73 | 1+7.13T+73T2 |
| 79 | 1+5.39T+79T2 |
| 83 | 1+2.03T+83T2 |
| 89 | 1+6.89T+89T2 |
| 97 | 1+14.6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.43370309948356759355377065584, −9.745838140221454045526974486032, −8.633099350450562745822207012641, −8.193375193607149075719694659386, −7.34250280098881812049235129319, −5.94653348036128069079180912338, −5.07536770607284294125650802195, −4.01975644818778433237683685396, −2.84860105763173388855996623049, −0.77488385266128951688398560546,
0.77488385266128951688398560546, 2.84860105763173388855996623049, 4.01975644818778433237683685396, 5.07536770607284294125650802195, 5.94653348036128069079180912338, 7.34250280098881812049235129319, 8.193375193607149075719694659386, 8.633099350450562745822207012641, 9.745838140221454045526974486032, 10.43370309948356759355377065584