L(s) = 1 | + 1.86·2-s − 3.34·3-s + 1.48·4-s + 0.866·5-s − 6.24·6-s − 0.965·8-s + 8.21·9-s + 1.61·10-s − 3.86·11-s − 4.96·12-s + 13-s − 2.90·15-s − 4.76·16-s − 3.34·17-s + 15.3·18-s − 5.38·19-s + 1.28·20-s − 7.21·22-s − 5.24·23-s + 3.23·24-s − 4.24·25-s + 1.86·26-s − 17.4·27-s + 1.69·29-s − 5.41·30-s + 7.56·31-s − 6.96·32-s + ⋯ |
L(s) = 1 | + 1.31·2-s − 1.93·3-s + 0.741·4-s + 0.387·5-s − 2.55·6-s − 0.341·8-s + 2.73·9-s + 0.511·10-s − 1.16·11-s − 1.43·12-s + 0.277·13-s − 0.748·15-s − 1.19·16-s − 0.812·17-s + 3.61·18-s − 1.23·19-s + 0.287·20-s − 1.53·22-s − 1.09·23-s + 0.659·24-s − 0.849·25-s + 0.365·26-s − 3.36·27-s + 0.315·29-s − 0.988·30-s + 1.35·31-s − 1.23·32-s + ⋯ |
Λ(s)=(=(637s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(637s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1−T |
good | 2 | 1−1.86T+2T2 |
| 3 | 1+3.34T+3T2 |
| 5 | 1−0.866T+5T2 |
| 11 | 1+3.86T+11T2 |
| 17 | 1+3.34T+17T2 |
| 19 | 1+5.38T+19T2 |
| 23 | 1+5.24T+23T2 |
| 29 | 1−1.69T+29T2 |
| 31 | 1−7.56T+31T2 |
| 37 | 1+4.83T+37T2 |
| 41 | 1+4.06T+41T2 |
| 43 | 1−4.03T+43T2 |
| 47 | 1+3.65T+47T2 |
| 53 | 1+0.215T+53T2 |
| 59 | 1+2.78T+59T2 |
| 61 | 1−9.03T+61T2 |
| 67 | 1+7.66T+67T2 |
| 71 | 1−4.90T+71T2 |
| 73 | 1−15.5T+73T2 |
| 79 | 1−9.43T+79T2 |
| 83 | 1+4.09T+83T2 |
| 89 | 1+0.418T+89T2 |
| 97 | 1+7.11T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.53037548627621170919192519519, −9.738586663512547851786590594763, −8.192831151997316336892533342234, −6.76550769822222441770282968481, −6.22389698425433008111806872943, −5.50561498754813863688883229204, −4.76321301533434046171986553243, −4.00510973766594395050002517318, −2.17913938645567897664155777485, 0,
2.17913938645567897664155777485, 4.00510973766594395050002517318, 4.76321301533434046171986553243, 5.50561498754813863688883229204, 6.22389698425433008111806872943, 6.76550769822222441770282968481, 8.192831151997316336892533342234, 9.738586663512547851786590594763, 10.53037548627621170919192519519