Properties

Label 2-637-1.1-c1-0-22
Degree $2$
Conductor $637$
Sign $1$
Analytic cond. $5.08647$
Root an. cond. $2.25532$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.83·2-s + 0.853·3-s + 1.35·4-s + 2.62·5-s + 1.56·6-s − 1.17·8-s − 2.27·9-s + 4.81·10-s + 3.26·11-s + 1.15·12-s + 13-s + 2.24·15-s − 4.87·16-s + 4.53·17-s − 4.16·18-s + 4.06·19-s + 3.56·20-s + 5.98·22-s − 4.53·23-s − 1.00·24-s + 1.89·25-s + 1.83·26-s − 4.50·27-s − 1.42·29-s + 4.10·30-s − 2.80·31-s − 6.57·32-s + ⋯
L(s)  = 1  + 1.29·2-s + 0.492·3-s + 0.678·4-s + 1.17·5-s + 0.638·6-s − 0.416·8-s − 0.757·9-s + 1.52·10-s + 0.984·11-s + 0.334·12-s + 0.277·13-s + 0.578·15-s − 1.21·16-s + 1.09·17-s − 0.980·18-s + 0.932·19-s + 0.797·20-s + 1.27·22-s − 0.945·23-s − 0.205·24-s + 0.378·25-s + 0.359·26-s − 0.866·27-s − 0.264·29-s + 0.749·30-s − 0.503·31-s − 1.16·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(637\)    =    \(7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(5.08647\)
Root analytic conductor: \(2.25532\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{637} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 637,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.658519729\)
\(L(\frac12)\) \(\approx\) \(3.658519729\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 - T \)
good2 \( 1 - 1.83T + 2T^{2} \)
3 \( 1 - 0.853T + 3T^{2} \)
5 \( 1 - 2.62T + 5T^{2} \)
11 \( 1 - 3.26T + 11T^{2} \)
17 \( 1 - 4.53T + 17T^{2} \)
19 \( 1 - 4.06T + 19T^{2} \)
23 \( 1 + 4.53T + 23T^{2} \)
29 \( 1 + 1.42T + 29T^{2} \)
31 \( 1 + 2.80T + 31T^{2} \)
37 \( 1 + 10.0T + 37T^{2} \)
41 \( 1 + 2.84T + 41T^{2} \)
43 \( 1 - 9.72T + 43T^{2} \)
47 \( 1 + 9.44T + 47T^{2} \)
53 \( 1 - 5.26T + 53T^{2} \)
59 \( 1 + 2.56T + 59T^{2} \)
61 \( 1 + 11.1T + 61T^{2} \)
67 \( 1 + 1.98T + 67T^{2} \)
71 \( 1 + 11.7T + 71T^{2} \)
73 \( 1 - 12.1T + 73T^{2} \)
79 \( 1 - 11.9T + 79T^{2} \)
83 \( 1 - 13.2T + 83T^{2} \)
89 \( 1 - 10.6T + 89T^{2} \)
97 \( 1 + 13.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.66354676703402963636632321490, −9.486718033023664631628693345734, −9.120832731181008022570243555899, −7.910692728784159615642134206833, −6.59152220820597614388635124341, −5.79198189725718630430871254835, −5.26562698114258209798116913137, −3.83667107048168242498577795091, −3.09389315517282991663458065506, −1.82639530032567334447259075068, 1.82639530032567334447259075068, 3.09389315517282991663458065506, 3.83667107048168242498577795091, 5.26562698114258209798116913137, 5.79198189725718630430871254835, 6.59152220820597614388635124341, 7.910692728784159615642134206833, 9.120832731181008022570243555899, 9.486718033023664631628693345734, 10.66354676703402963636632321490

Graph of the $Z$-function along the critical line