Properties

Label 2-6336-1.1-c1-0-52
Degree $2$
Conductor $6336$
Sign $1$
Analytic cond. $50.5932$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.56·5-s + 3.12·7-s − 11-s + 5.12·13-s − 2·17-s + 4·19-s − 2.43·23-s + 7.68·25-s − 5.12·29-s − 5.56·31-s + 11.1·35-s + 7.56·37-s + 1.12·41-s + 7.12·43-s − 8·47-s + 2.75·49-s + 12.2·53-s − 3.56·55-s + 7.80·59-s − 1.12·61-s + 18.2·65-s − 9.56·67-s + 8.68·71-s + 5.12·73-s − 3.12·77-s − 11.1·79-s + 0.876·83-s + ⋯
L(s)  = 1  + 1.59·5-s + 1.18·7-s − 0.301·11-s + 1.42·13-s − 0.485·17-s + 0.917·19-s − 0.508·23-s + 1.53·25-s − 0.951·29-s − 0.998·31-s + 1.88·35-s + 1.24·37-s + 0.175·41-s + 1.08·43-s − 1.16·47-s + 0.393·49-s + 1.68·53-s − 0.480·55-s + 1.01·59-s − 0.143·61-s + 2.26·65-s − 1.16·67-s + 1.03·71-s + 0.599·73-s − 0.355·77-s − 1.25·79-s + 0.0962·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6336\)    =    \(2^{6} \cdot 3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(50.5932\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6336,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.624203128\)
\(L(\frac12)\) \(\approx\) \(3.624203128\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + T \)
good5 \( 1 - 3.56T + 5T^{2} \)
7 \( 1 - 3.12T + 7T^{2} \)
13 \( 1 - 5.12T + 13T^{2} \)
17 \( 1 + 2T + 17T^{2} \)
19 \( 1 - 4T + 19T^{2} \)
23 \( 1 + 2.43T + 23T^{2} \)
29 \( 1 + 5.12T + 29T^{2} \)
31 \( 1 + 5.56T + 31T^{2} \)
37 \( 1 - 7.56T + 37T^{2} \)
41 \( 1 - 1.12T + 41T^{2} \)
43 \( 1 - 7.12T + 43T^{2} \)
47 \( 1 + 8T + 47T^{2} \)
53 \( 1 - 12.2T + 53T^{2} \)
59 \( 1 - 7.80T + 59T^{2} \)
61 \( 1 + 1.12T + 61T^{2} \)
67 \( 1 + 9.56T + 67T^{2} \)
71 \( 1 - 8.68T + 71T^{2} \)
73 \( 1 - 5.12T + 73T^{2} \)
79 \( 1 + 11.1T + 79T^{2} \)
83 \( 1 - 0.876T + 83T^{2} \)
89 \( 1 + 2.68T + 89T^{2} \)
97 \( 1 - 15.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.081498127125947361477778328167, −7.36813072302160515271592336962, −6.47862077965142934251158356936, −5.67840920998498083749479687348, −5.49306341965071616054522685808, −4.51475117725359205918001901078, −3.64417200868825107703509524537, −2.49733713128358253641998926041, −1.80791720950501953299311220262, −1.09393554670933154497075004180, 1.09393554670933154497075004180, 1.80791720950501953299311220262, 2.49733713128358253641998926041, 3.64417200868825107703509524537, 4.51475117725359205918001901078, 5.49306341965071616054522685808, 5.67840920998498083749479687348, 6.47862077965142934251158356936, 7.36813072302160515271592336962, 8.081498127125947361477778328167

Graph of the $Z$-function along the critical line