L(s) = 1 | − 4.22·5-s − 4.94·7-s − 11-s + 4.22·13-s − 3.28·17-s + 1.28·19-s + 2.22·23-s + 12.8·25-s + 3.28·29-s − 2.56·31-s + 20.9·35-s − 0.568·37-s + 5.17·41-s + 11.1·43-s − 10.2·47-s + 17.4·49-s + 10.1·53-s + 4.22·55-s − 8.45·59-s − 5.66·61-s − 17.8·65-s + 14.3·67-s − 5.77·71-s − 12.3·73-s + 4.94·77-s − 0.486·79-s + 8·83-s + ⋯ |
L(s) = 1 | − 1.89·5-s − 1.86·7-s − 0.301·11-s + 1.17·13-s − 0.796·17-s + 0.294·19-s + 0.464·23-s + 2.57·25-s + 0.609·29-s − 0.461·31-s + 3.53·35-s − 0.0934·37-s + 0.808·41-s + 1.70·43-s − 1.49·47-s + 2.49·49-s + 1.39·53-s + 0.570·55-s − 1.10·59-s − 0.724·61-s − 2.21·65-s + 1.75·67-s − 0.684·71-s − 1.44·73-s + 0.563·77-s − 0.0546·79-s + 0.878·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 + T \) |
good | 5 | \( 1 + 4.22T + 5T^{2} \) |
| 7 | \( 1 + 4.94T + 7T^{2} \) |
| 13 | \( 1 - 4.22T + 13T^{2} \) |
| 17 | \( 1 + 3.28T + 17T^{2} \) |
| 19 | \( 1 - 1.28T + 19T^{2} \) |
| 23 | \( 1 - 2.22T + 23T^{2} \) |
| 29 | \( 1 - 3.28T + 29T^{2} \) |
| 31 | \( 1 + 2.56T + 31T^{2} \) |
| 37 | \( 1 + 0.568T + 37T^{2} \) |
| 41 | \( 1 - 5.17T + 41T^{2} \) |
| 43 | \( 1 - 11.1T + 43T^{2} \) |
| 47 | \( 1 + 10.2T + 47T^{2} \) |
| 53 | \( 1 - 10.1T + 53T^{2} \) |
| 59 | \( 1 + 8.45T + 59T^{2} \) |
| 61 | \( 1 + 5.66T + 61T^{2} \) |
| 67 | \( 1 - 14.3T + 67T^{2} \) |
| 71 | \( 1 + 5.77T + 71T^{2} \) |
| 73 | \( 1 + 12.3T + 73T^{2} \) |
| 79 | \( 1 + 0.486T + 79T^{2} \) |
| 83 | \( 1 - 8T + 83T^{2} \) |
| 89 | \( 1 + 2T + 89T^{2} \) |
| 97 | \( 1 + 6.45T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.61104742475792207837861047308, −6.98643680636268047495440812074, −6.45805783472198508447065466607, −5.66637072527241240694023522780, −4.50298897369996450723015332489, −3.91224721588171564395687275088, −3.30276925176112080468869808559, −2.71571841018875817573288173289, −0.892281999990426680409833603736, 0,
0.892281999990426680409833603736, 2.71571841018875817573288173289, 3.30276925176112080468869808559, 3.91224721588171564395687275088, 4.50298897369996450723015332489, 5.66637072527241240694023522780, 6.45805783472198508447065466607, 6.98643680636268047495440812074, 7.61104742475792207837861047308