Properties

Label 2-6336-1.1-c1-0-32
Degree $2$
Conductor $6336$
Sign $-1$
Analytic cond. $50.5932$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.22·5-s − 4.94·7-s − 11-s + 4.22·13-s − 3.28·17-s + 1.28·19-s + 2.22·23-s + 12.8·25-s + 3.28·29-s − 2.56·31-s + 20.9·35-s − 0.568·37-s + 5.17·41-s + 11.1·43-s − 10.2·47-s + 17.4·49-s + 10.1·53-s + 4.22·55-s − 8.45·59-s − 5.66·61-s − 17.8·65-s + 14.3·67-s − 5.77·71-s − 12.3·73-s + 4.94·77-s − 0.486·79-s + 8·83-s + ⋯
L(s)  = 1  − 1.89·5-s − 1.86·7-s − 0.301·11-s + 1.17·13-s − 0.796·17-s + 0.294·19-s + 0.464·23-s + 2.57·25-s + 0.609·29-s − 0.461·31-s + 3.53·35-s − 0.0934·37-s + 0.808·41-s + 1.70·43-s − 1.49·47-s + 2.49·49-s + 1.39·53-s + 0.570·55-s − 1.10·59-s − 0.724·61-s − 2.21·65-s + 1.75·67-s − 0.684·71-s − 1.44·73-s + 0.563·77-s − 0.0546·79-s + 0.878·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6336\)    =    \(2^{6} \cdot 3^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(50.5932\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6336,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + 4.22T + 5T^{2} \)
7 \( 1 + 4.94T + 7T^{2} \)
13 \( 1 - 4.22T + 13T^{2} \)
17 \( 1 + 3.28T + 17T^{2} \)
19 \( 1 - 1.28T + 19T^{2} \)
23 \( 1 - 2.22T + 23T^{2} \)
29 \( 1 - 3.28T + 29T^{2} \)
31 \( 1 + 2.56T + 31T^{2} \)
37 \( 1 + 0.568T + 37T^{2} \)
41 \( 1 - 5.17T + 41T^{2} \)
43 \( 1 - 11.1T + 43T^{2} \)
47 \( 1 + 10.2T + 47T^{2} \)
53 \( 1 - 10.1T + 53T^{2} \)
59 \( 1 + 8.45T + 59T^{2} \)
61 \( 1 + 5.66T + 61T^{2} \)
67 \( 1 - 14.3T + 67T^{2} \)
71 \( 1 + 5.77T + 71T^{2} \)
73 \( 1 + 12.3T + 73T^{2} \)
79 \( 1 + 0.486T + 79T^{2} \)
83 \( 1 - 8T + 83T^{2} \)
89 \( 1 + 2T + 89T^{2} \)
97 \( 1 + 6.45T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.61104742475792207837861047308, −6.98643680636268047495440812074, −6.45805783472198508447065466607, −5.66637072527241240694023522780, −4.50298897369996450723015332489, −3.91224721588171564395687275088, −3.30276925176112080468869808559, −2.71571841018875817573288173289, −0.892281999990426680409833603736, 0, 0.892281999990426680409833603736, 2.71571841018875817573288173289, 3.30276925176112080468869808559, 3.91224721588171564395687275088, 4.50298897369996450723015332489, 5.66637072527241240694023522780, 6.45805783472198508447065466607, 6.98643680636268047495440812074, 7.61104742475792207837861047308

Graph of the $Z$-function along the critical line