L(s) = 1 | + 2-s + (1.31 − 1.12i)3-s + 4-s + (0.5 + 0.866i)5-s + (1.31 − 1.12i)6-s + (2.64 − 0.0963i)7-s + 8-s + (0.465 − 2.96i)9-s + (0.5 + 0.866i)10-s + (−1.10 + 1.91i)11-s + (1.31 − 1.12i)12-s + (−0.313 + 0.542i)13-s + (2.64 − 0.0963i)14-s + (1.63 + 0.576i)15-s + 16-s + (−1.90 − 3.29i)17-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (0.759 − 0.649i)3-s + 0.5·4-s + (0.223 + 0.387i)5-s + (0.537 − 0.459i)6-s + (0.999 − 0.0364i)7-s + 0.353·8-s + (0.155 − 0.987i)9-s + (0.158 + 0.273i)10-s + (−0.332 + 0.576i)11-s + (0.379 − 0.324i)12-s + (−0.0868 + 0.150i)13-s + (0.706 − 0.0257i)14-s + (0.421 + 0.148i)15-s + 0.250·16-s + (−0.461 − 0.799i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.919 + 0.393i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.919 + 0.393i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.06032 - 0.628159i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.06032 - 0.628159i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + (-1.31 + 1.12i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (-2.64 + 0.0963i)T \) |
good | 11 | \( 1 + (1.10 - 1.91i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (0.313 - 0.542i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (1.90 + 3.29i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.79 - 6.57i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.30 + 2.25i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2.01 + 3.48i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 7.40T + 31T^{2} \) |
| 37 | \( 1 + (2.81 - 4.87i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.09 - 1.90i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.25 + 7.37i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 0.450T + 47T^{2} \) |
| 53 | \( 1 + (1.19 + 2.06i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 5.80T + 59T^{2} \) |
| 61 | \( 1 + 0.968T + 61T^{2} \) |
| 67 | \( 1 - 4.08T + 67T^{2} \) |
| 71 | \( 1 - 6.99T + 71T^{2} \) |
| 73 | \( 1 + (-0.696 - 1.20i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + 11.8T + 79T^{2} \) |
| 83 | \( 1 + (7.35 + 12.7i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (5.98 - 10.3i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-8.36 - 14.4i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.55291750381440447410365807089, −9.785306878084190235425008582002, −8.484972123485659648539486498887, −7.87028169418165416903095861671, −6.95706212970612733020793815495, −6.14541712149112601846736828972, −4.88347104654788625421699683100, −3.90855885079563034821945847872, −2.56536800905053654001528566030, −1.75224994645616744017924673477,
1.86420157251388859054062571516, 2.97123558910428624665446946636, 4.26425168227647019278900165772, 4.87075941769679926317220385255, 5.83504158075142378682562686146, 7.15280502755105676481527341895, 8.285748858266991753971905668535, 8.676939058232671551208457829427, 9.829159636191226927730208562562, 10.88468153055124058832132654063