L(s) = 1 | + 2-s + (1.5 + 0.866i)3-s + 4-s + (0.5 + 0.866i)5-s + (1.5 + 0.866i)6-s + (−2 + 1.73i)7-s + 8-s + (1.5 + 2.59i)9-s + (0.5 + 0.866i)10-s + (1.5 + 0.866i)12-s + (2 − 3.46i)13-s + (−2 + 1.73i)14-s + 1.73i·15-s + 16-s + (1.5 + 2.59i)18-s + (−1 + 1.73i)19-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (0.866 + 0.499i)3-s + 0.5·4-s + (0.223 + 0.387i)5-s + (0.612 + 0.353i)6-s + (−0.755 + 0.654i)7-s + 0.353·8-s + (0.5 + 0.866i)9-s + (0.158 + 0.273i)10-s + (0.433 + 0.249i)12-s + (0.554 − 0.960i)13-s + (−0.534 + 0.462i)14-s + 0.447i·15-s + 0.250·16-s + (0.353 + 0.612i)18-s + (−0.229 + 0.397i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.580 - 0.814i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.580 - 0.814i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.60243 + 1.34104i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.60243 + 1.34104i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + (-1.5 - 0.866i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (2 - 1.73i)T \) |
good | 11 | \( 1 + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2 + 3.46i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1 - 1.73i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.5 - 2.59i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3 + 5.19i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 2T + 31T^{2} \) |
| 37 | \( 1 + (1 - 1.73i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-3 + 5.19i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.5 + 9.52i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 3T + 47T^{2} \) |
| 53 | \( 1 + (3 + 5.19i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 12T + 59T^{2} \) |
| 61 | \( 1 + 7T + 61T^{2} \) |
| 67 | \( 1 + 7T + 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + (1 + 1.73i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + 4T + 79T^{2} \) |
| 83 | \( 1 + (-6 - 10.3i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-7.5 + 12.9i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-5 - 8.66i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.55356176675862854782324236799, −9.975280292588606817397177220846, −9.024300868298668252337431464618, −8.140950325875924112646368212599, −7.14190411991154944198345905385, −6.03093633686515806676927030567, −5.26629747983766552686987831856, −3.86387976294663709543627960013, −3.15936419588161073453390506441, −2.15580621080420397833725850882,
1.36481776270053802479604340386, 2.74891981447445444763778048110, 3.77702980781685845132090211119, 4.66090084177411322117201729768, 6.19246350730544000035282143921, 6.77327113186497511185373468528, 7.67287270462553408894963336702, 8.791522890318179597822811015662, 9.445033729965284520195419349202, 10.46190338462439932277847286279