L(s) = 1 | + 2-s + (1.70 + 0.317i)3-s + 4-s + (1.22 + 1.86i)5-s + (1.70 + 0.317i)6-s + (−0.691 − 2.55i)7-s + 8-s + (2.79 + 1.08i)9-s + (1.22 + 1.86i)10-s + (−3.10 + 1.79i)11-s + (1.70 + 0.317i)12-s + (2.03 + 3.51i)13-s + (−0.691 − 2.55i)14-s + (1.49 + 3.57i)15-s + 16-s + (−4.57 − 2.63i)17-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (0.983 + 0.183i)3-s + 0.5·4-s + (0.549 + 0.835i)5-s + (0.695 + 0.129i)6-s + (−0.261 − 0.965i)7-s + 0.353·8-s + (0.932 + 0.360i)9-s + (0.388 + 0.590i)10-s + (−0.936 + 0.540i)11-s + (0.491 + 0.0917i)12-s + (0.563 + 0.975i)13-s + (−0.184 − 0.682i)14-s + (0.387 + 0.921i)15-s + 0.250·16-s + (−1.10 − 0.640i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.908 - 0.416i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.908 - 0.416i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.14462 + 0.686710i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.14462 + 0.686710i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + (-1.70 - 0.317i)T \) |
| 5 | \( 1 + (-1.22 - 1.86i)T \) |
| 7 | \( 1 + (0.691 + 2.55i)T \) |
good | 11 | \( 1 + (3.10 - 1.79i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.03 - 3.51i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (4.57 + 2.63i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.13 + 1.81i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.39 + 4.15i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (6.99 + 4.03i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 3.52iT - 31T^{2} \) |
| 37 | \( 1 + (0.879 - 0.507i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (4.80 + 8.31i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.43 - 2.56i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 11.5iT - 47T^{2} \) |
| 53 | \( 1 + (5.71 - 9.89i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 7.03T + 59T^{2} \) |
| 61 | \( 1 + 11.2iT - 61T^{2} \) |
| 67 | \( 1 + 6.99iT - 67T^{2} \) |
| 71 | \( 1 + 0.828iT - 71T^{2} \) |
| 73 | \( 1 + (-3.51 + 6.08i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 - 0.0299T + 79T^{2} \) |
| 83 | \( 1 + (6.89 + 3.98i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (0.625 + 1.08i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (4.69 - 8.13i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.77988492621553400176819512803, −9.764016317572805048174440116438, −9.156491120016535915887013822719, −7.67627269527129554401291045314, −7.13688483985315040327805027281, −6.32663079845700859447179396461, −4.84767675820876780328352331550, −4.00126391142719037326124918937, −2.91835388625237575834685491721, −2.02528819823801437803608986053,
1.65111976081761429538555984503, 2.79846180993241808319060635762, 3.71304272195583670592723878618, 5.22738321743863918151475569658, 5.68693742934174825271185249572, 6.91262154831405913878997659044, 8.181187485661335564822906141034, 8.613394569886656811881971413833, 9.552588974460709709787683497388, 10.46059400874411077187942001157