L(s) = 1 | + 2-s + (0.193 + 1.72i)3-s + 4-s + (2.07 − 0.842i)5-s + (0.193 + 1.72i)6-s + (−1.57 + 2.12i)7-s + 8-s + (−2.92 + 0.667i)9-s + (2.07 − 0.842i)10-s + (−4.72 + 2.73i)11-s + (0.193 + 1.72i)12-s + (2.33 + 4.04i)13-s + (−1.57 + 2.12i)14-s + (1.85 + 3.40i)15-s + 16-s + (−0.153 − 0.0885i)17-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (0.111 + 0.993i)3-s + 0.5·4-s + (0.926 − 0.376i)5-s + (0.0791 + 0.702i)6-s + (−0.594 + 0.804i)7-s + 0.353·8-s + (−0.974 + 0.222i)9-s + (0.655 − 0.266i)10-s + (−1.42 + 0.823i)11-s + (0.0559 + 0.496i)12-s + (0.648 + 1.12i)13-s + (−0.420 + 0.568i)14-s + (0.477 + 0.878i)15-s + 0.250·16-s + (−0.0372 − 0.0214i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0734 - 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0734 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.74667 + 1.62275i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.74667 + 1.62275i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + (-0.193 - 1.72i)T \) |
| 5 | \( 1 + (-2.07 + 0.842i)T \) |
| 7 | \( 1 + (1.57 - 2.12i)T \) |
good | 11 | \( 1 + (4.72 - 2.73i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.33 - 4.04i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (0.153 + 0.0885i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.69 + 2.13i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.10 + 1.91i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-8.66 - 5.00i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 1.76iT - 31T^{2} \) |
| 37 | \( 1 + (-5.07 + 2.93i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (5.20 + 9.01i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.58 + 1.49i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 5.22iT - 47T^{2} \) |
| 53 | \( 1 + (-5.40 + 9.36i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 9.73T + 59T^{2} \) |
| 61 | \( 1 - 9.74iT - 61T^{2} \) |
| 67 | \( 1 - 11.4iT - 67T^{2} \) |
| 71 | \( 1 + 12.4iT - 71T^{2} \) |
| 73 | \( 1 + (0.142 - 0.246i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 - 5.83T + 79T^{2} \) |
| 83 | \( 1 + (5.44 + 3.14i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (2.64 + 4.57i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.26 + 2.19i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63156409861418632335706714220, −10.00085848887744131623410045767, −9.179946123881386077776206963803, −8.488575942315609936023334076044, −6.98631461843367075709100908954, −5.95883477763734631064316026774, −5.18870983588666592276789468319, −4.52440737323284850998079616104, −3.06357719040924271881015821989, −2.22867365728370627381553661354,
1.07561771353199848087099645335, 2.79724096391663233444096461830, 3.24159998928801197097125729101, 5.15279999816023545796386007163, 5.97581411887904960045497311977, 6.56166099164831140670189581005, 7.68490510185483966649129763879, 8.258892974893396357606023844650, 9.786147142433101942258264217996, 10.51562911329654925446428959741