L(s) = 1 | + (0.965 + 0.258i)2-s + (0.866 + 0.499i)4-s + (−0.988 − 2.00i)5-s + (−2.29 − 1.31i)7-s + (0.707 + 0.707i)8-s + (−0.435 − 2.19i)10-s + (−1.05 − 0.608i)11-s + (2.42 − 2.42i)13-s + (−1.87 − 1.86i)14-s + (0.500 + 0.866i)16-s + (−0.896 − 3.34i)17-s + (7.32 − 4.22i)19-s + (0.146 − 2.23i)20-s + (−0.859 − 0.859i)22-s + (1.91 − 7.15i)23-s + ⋯ |
L(s) = 1 | + (0.683 + 0.183i)2-s + (0.433 + 0.249i)4-s + (−0.442 − 0.896i)5-s + (−0.867 − 0.497i)7-s + (0.249 + 0.249i)8-s + (−0.137 − 0.693i)10-s + (−0.317 − 0.183i)11-s + (0.672 − 0.672i)13-s + (−0.501 − 0.498i)14-s + (0.125 + 0.216i)16-s + (−0.217 − 0.811i)17-s + (1.68 − 0.970i)19-s + (0.0328 − 0.498i)20-s + (−0.183 − 0.183i)22-s + (0.399 − 1.49i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.254 + 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.254 + 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.35931 - 1.04808i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.35931 - 1.04808i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.965 - 0.258i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.988 + 2.00i)T \) |
| 7 | \( 1 + (2.29 + 1.31i)T \) |
good | 11 | \( 1 + (1.05 + 0.608i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.42 + 2.42i)T - 13iT^{2} \) |
| 17 | \( 1 + (0.896 + 3.34i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-7.32 + 4.22i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.91 + 7.15i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + 7.86T + 29T^{2} \) |
| 31 | \( 1 + (3.47 - 6.01i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1.12 - 4.19i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + 5.75iT - 41T^{2} \) |
| 43 | \( 1 + (-1.25 + 1.25i)T - 43iT^{2} \) |
| 47 | \( 1 + (-7.27 - 1.94i)T + (40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (8.03 - 2.15i)T + (45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (-0.0764 + 0.132i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.62 - 11.4i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-13.0 + 3.50i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 11.6iT - 71T^{2} \) |
| 73 | \( 1 + (2.06 + 7.69i)T + (-63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-1.09 + 0.634i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.08 - 3.08i)T + 83iT^{2} \) |
| 89 | \( 1 + (1.92 + 3.33i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-3.22 - 3.22i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.59255085345232419965087869031, −9.419604524838443699045071719599, −8.690624497934956632687414653621, −7.54648307237755963026237338134, −6.91620255299592725985726540543, −5.64045454871076988688062852204, −4.93589902193584655824462960556, −3.78687800132103155805302761044, −2.90420185569182226146647201513, −0.76278820500121784805351177603,
1.98336097332641764933963579909, 3.39256816095341205338968671381, 3.79416145735740741621466616220, 5.48232847913917083871457343280, 6.12195900535723625258761460065, 7.14655398556431172527952083941, 7.87354059054826211260799763535, 9.338192609560191683780647908797, 9.908670463062126430702833083765, 11.12289198699390004264932891841