L(s) = 1 | + (0.965 − 0.258i)2-s + (0.866 − 0.499i)4-s + (1.87 + 1.21i)5-s + (−1.94 − 1.78i)7-s + (0.707 − 0.707i)8-s + (2.12 + 0.686i)10-s + (2.64 − 1.52i)11-s + (1 + i)13-s + (−2.34 − 1.22i)14-s + (0.500 − 0.866i)16-s + (1.11 − 4.16i)17-s + (5.47 + 3.15i)19-s + (2.23 + 0.111i)20-s + (2.15 − 2.15i)22-s + (−0.435 − 1.62i)23-s + ⋯ |
L(s) = 1 | + (0.683 − 0.183i)2-s + (0.433 − 0.249i)4-s + (0.839 + 0.542i)5-s + (−0.736 − 0.676i)7-s + (0.249 − 0.249i)8-s + (0.672 + 0.216i)10-s + (0.797 − 0.460i)11-s + (0.277 + 0.277i)13-s + (−0.626 − 0.327i)14-s + (0.125 − 0.216i)16-s + (0.270 − 1.01i)17-s + (1.25 + 0.724i)19-s + (0.499 + 0.0250i)20-s + (0.460 − 0.460i)22-s + (−0.0908 − 0.339i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.918 + 0.395i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.918 + 0.395i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.45946 - 0.506344i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.45946 - 0.506344i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.965 + 0.258i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.87 - 1.21i)T \) |
| 7 | \( 1 + (1.94 + 1.78i)T \) |
good | 11 | \( 1 + (-2.64 + 1.52i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-1 - i)T + 13iT^{2} \) |
| 17 | \( 1 + (-1.11 + 4.16i)T + (-14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (-5.47 - 3.15i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.435 + 1.62i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + 5.88T + 29T^{2} \) |
| 31 | \( 1 + (-1.5 - 2.59i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.83 - 6.83i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 - 2.82iT - 41T^{2} \) |
| 43 | \( 1 + (7.63 + 7.63i)T + 43iT^{2} \) |
| 47 | \( 1 + (0.305 - 0.0819i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (-1.57 - 0.422i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (5.99 + 10.3i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.15 - 5.47i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (14.5 + 3.89i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 - 1.86iT - 71T^{2} \) |
| 73 | \( 1 + (0.982 - 3.66i)T + (-63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (-3.14 - 1.81i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-8.67 + 8.67i)T - 83iT^{2} \) |
| 89 | \( 1 + (-6.32 + 10.9i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (5.84 - 5.84i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.51461261016213402100148433105, −9.809216361691799441800318140133, −9.131346560244985605553034108477, −7.58701625070870559338996250044, −6.72332802658257610014260802118, −6.08572640654303372569998351893, −5.06553712373560895040837650752, −3.68342273025410817937737176681, −2.99967215008443706909046777920, −1.39768344702631611909790555926,
1.63638054258802604925139553035, 2.97124138444275376674572730431, 4.12387696835854151529776283449, 5.37378721469562050856578047924, 5.94490783502718610104148860057, 6.81146143695033815506916704088, 7.964597700592448465221653205898, 9.181481263265275782679351675548, 9.536626220199793931286843614478, 10.66662514296751376177831490135